
Overview

The OpenLegacy IMS DC Connector generates microservice-based APIs to deliver and extend legacy IMS DC functionality
through the OpenLegacy platform. Using the OpenLegacy IMS DC Connector does not require any changes to existing
applications or the installation of any additional software.

CONNECTOR DATA SHEET

OpenLegacy IMS DC Connector

Key Benefits

• Enables access to all legacy IMS DC transactions using
technology supported by IBM

• Supports transaction-specific data models so
transaction data can be easily retrieved

• Automated IDE and use of a standard Java stack saves
time, effort and money

• Code-first approach allows source control and
versioning, CI/CD pipelines, and the use of standardized
development methodologies

• Convenient sandbox testing using Junit and Swagger

• Complies with security standards

Features

• Automatic generation of Java data structures from IMS
DC Transaction copybooks

• Direct access to IMS transactions from APIs and self-
contained microservices

• Multiple simultaneous IMS DC transactions handled
through dependency-based orchestration

• Wizard and template driven connector definition and
configuration using Spring Boot framework

• Generation of connector based on pre-defined
structures, with IMS DC-specific configurations

IMS DC Connector Architecture

SDK
• Models are automatically generated from source

copybooks

• Models represent transactions

• Models contain I/O fields that reflect transaction
I/O fields

• Connector receives a model with input parameters,
invokes the transaction and populates the model output
fields with the response

• Connector is based on IBM’s standard IMS Connect
library

Service
• Exposes a Java service and allows customization beyond

the IMS fields’ inputs and outputs

• Utilizes the SDK to implement customized service

• Java Implementation can be customized to apply new
business logic and cross-cutting concerns

Contract
• Standard (REST) contracts are exposed using the

Swagger API catalog

• Additional endpoints, such as SOAP, RabbitMQ and
JMS are also supported

About OpenLegacy

OpenLegacy helps organizations quickly and efficiently launch innovative digital services by extending their legacy or
core mission-critical systems to digital channels.

Headquarters
11921 Freedom Drive,
Suite 550
Reston, Virginia, 20190
USA

www.openlegacy.com
sales@openlegacy.com

Chicago, IL, USA
Dallas, TX, USA
Mexico
Israel
Switzerland

© 2018 OpenLegacy Inc. All Rights Reserved DS-C_IMS_Aug6_2018_Web

OpenLegacy IMS DC Connector Technical Details

OpenLegacy Microservice Architecture
The OpenLegacy platform serves as a
microservices enabler. It allows easy
decoupling of existing monolithic
applications into small independent
microservices. The OpenLegacy
integration process creates each
API integrated with the monolith
in a separate Java project. By
default, the OpenLegacy Java
Project template contains all of the
complex configurations needed
to allow each API project to be
deployed separately, to communicate
with the various microservices
ecosystem components, to scale out
easily and behave as a complete
microservice.

Technical Prerequisites
• IMS installed on mainframe, configured to use one of

the default user message exit routines (HWSSMPL0,
HWSSMPL1)

• Full IDE installation on development machine

• The OpenLegacy IMS DC Connector has been tested and
officially verified on IMS v12 and v14

Connector Configuration

In addition to common Mainframe RPC project properties,
there are also configuration properties specific to IMS DC,
such as:

• host: IP address of the IMS host

• port: the port used by the IMS host

• username: RACF username (if RACF is used)

• codepage: The code page for translating buffers

• data-store-name: The name of the IMS host data store

• connection-timeout:
connection has timed out

• transaction-timeout:
transaction has timed out

• password: RACF password (if RACF is used)

• group-name: RACF group (if RACF is used)

SDK Usage

OpenLegacy uses the IBM IMS Connect API to connect to IMS
mainframe and invoke IMS transactions. Like all other Open-
Legacy Java APIs, the IMS SDK uses the RpcSession interface
to execute a program represented by an RpcEntity.

