
Application Programming Interfaces (APIs) are fast

becoming the standard way for integration and systems

architecture design. These well defined but lightweight

interfaces enable unprecedented flexibility by allowing you

to expose processes and data for anyone to use. Having

a standard API to your IBM i based application means

not only that it can be used by any existing web or mobile

application but also that any new device, such as watches

or glasses or Wifi-connected coffee mugs will be able

connect to the same APIs in the same exact way.

That is all truly wonderful but moving to an API strategy

does not come without its challenges. There are things to

consider even beyond the technical challenge of creating

an APIs layer. Like most thing these challenges are best

confronted early on in the process where the cost of

change is the lowest.

 Security
The very nature of APIs suggest a certain lack of control

over who will end up using them. That’s their greatest

strength and the reason they are so flexible and easy to

use but that is also a source of possible security issues.

When designing API security, it is important to note that

there are different levels of security to consider, the

first of which is authentication. Unlike services, API can

be accessed by individual users as well as applications.

This means that two sets of security standards might be

applicable; oAuth for people and API keys for applications.

Second is access control. As you might want to expose

Four Things To Consider When
Considering APIs for IBM i System.
Congratulations. You have decided to take the leap: You’ve heard about APIs, you’ve
read about them. You realize that they are the new SOA and are the future of computing.
You want your IBM i system to expose APIs and you want it as soon as possible. But
what does that mean going forward, what do you have to take into account?

as APIs systems which were not initially designed for

such use cases, you need to pay attention to what type

of information your API actually expose. You may, for

example, have far more information on you customers

than you would have a 3rd party mobile app developers

get. Finally and for the same reasons you might want

to consider filtering the content of your data based on

specific context so that only a controlled subset of your

data can be pulled through the API.

 Workload
While APIs themselves do not necessarily imply an

increase of workload for your IBM i based application,

you do need to consider the fact that it will now be

much easier to access from mobile, web or any other

platform out there. Mobile generated workloads

especially might prove much more unexpected than

you thought. Not only do usage patterns differ from

web application (location based queries being sent tens

of times a minute from each device) but development

of these application is much more likely to be handled

by developers in an outside application studio. These

developers are not always aware of the importance of

reducing back-end workloads.

 Structure
Modern APIs usually mean REST APIs. REST is a great

protocol for lightweight service activation based on

HTTP, but in it’s core it is not meant for services at all,

OPEN INNOVATION

1.

2.

3.

© 2017 OpenLegacy Inc. All Rights Reserved
DS_Four_things_To_Consider_29Sept2017_web

www.openlegacy.com
sales@openlegacy.com

OpenLegacy USA
11921 Freedom Drive,
Suite 550
Reston, Virginia, 20190

Israel
3 Mota Gur, Olympia
Park, Petah Tikva, Israel

Mexico
Av. Insurgentes Sur #730,
Col. Del Valle,
Delegación Benito Juárez, Piso 2
México, DF. CP 03104

Switzerland (Europe)
Rue Etienne Dumont
1 Geneva, 1204
Switzerland

it is rather a resource centric protocol. The distinction is

nuanced yet important. Those of us who remember the

CORBA protocol may find some resemblance. The REST

protocol describes a resource using a hierarchical URI (ie

www.domain.com/customers/1002/accounts/233 means

account 233 belonging to cusomer 1002) and through

the HTTP method it describes what should be done with

this resource (PUT for create, GET for read etc.) This is

not the same as having a getCustomerAccount service. It

requires a different design of the application and a different

perspective of the system’s design. Having a REST API

which uses the URI line as a service identifier is technically

possible (ie www.domain.com/getCusotmerAccount?cus

t=1002&account=223) but is conceptually wrong and will

look unfamiliar and awkward to developers accustomed to

well formed, resource-based REST APIs. This seemingly

technical detail may prove quite significant as it is at the

heart of the design of the application and is incredibly hard

to change once the API solution is implemented.

 Governance
Much like SOA services, APIs need governance strategies

to keep them coherent and controlled. Unlike SOA services

these strategies can not rely on a central services bus

through which everything passes. Traditionally SOA was

meant to connect different parts of the organization’s

IT, APIs on the other hand have a much more of an

outward facing bias, aimed at outside users and 3rd

party developers. This means that API management,

the API equivalent to SOA governance needs to be both

flexible and comprehensive. Everything, from lifecycle

management to publication and description has to be done

with external users in mind. It is important to avoid making

assumption about the end user knowledge of the underlying

systems. Additionally, much like the APIs themselves,

the API management should be scalable. Having your API

publishing web page unavailable to developers is not a great

way to get ahead in the new API economy.

APIs are a great new way to think about your IT. While the

concept of decoupling back-end systems from front-end

ones isn’t exactly new, it’s implementation through APIs

can bring new flexibility and agility to your organization,

removing layers of complexity without compromising

governance. But when considering the move to an API

architecture, as in most things in life, planning ahead is

the key to success.

OpenLegacy helps organizations quickly

launchinnovative digital services by extending their

core (legacy) systems to the web, mobile and cloud

in days or weeks versus months. Our API software

quickly reduces project backlog by automating and

accelerating API creation, deployment, testing and

management from core applications, mainframes and

databases. Together, business and IT teams can quickly,

easily and securely meet consumer, partner or employee

demands for digital services without modernizing or

replacing core systems, and without special programming

skills or invasive changes to existing systems and

architectures. Learn why leading companies choose

OpenLegacy at www.openlegacy.com

OPEN INNOVATION

4.

http://www.openlegacy.com
http://www.domain.com/customers/1002/accounts/233
http://www.domain.com/getCusotmerAccount%3Fcust%3D1002%26account%3D223
http://www.domain.com/getCusotmerAccount%3Fcust%3D1002%26account%3D223
http://www.openlegacy.com

