

Intellyx White Paper

Copyright © 2015 Intellyx LLC | +1-617-517-4999 | agility@intellyx.com | www.intellyx.com

Legacy Migration vs. Modernization:

The Challenge of Coexistence

Jason Bloomberg

December 9, 2015

Ever since the first vacuum tube burned out in the first commercial digital computer, calls for IT

modernization have targeted older, legacy systems. Over the years, one plan after another for retiring

increasingly aged mainframes, midrange systems, databases, and enterprise applications have crossed

many a CIOs desk.

Yet while finally chucking that old system and replacing it with new and shiny tech may sound appealing,

in practice such full-fledged migrations are rarely practical or cost-effective. Instead, many enterprises

are realizing that older systems still provide value. Thus legacy modernization strategies are better off

focusing on coexistence rather than all-out migration.

However, every organization’s legacy context is different, as are its business goals. As a result, there are

a plethora of migration, modernization, and coexistence scenarios, each with its own pros and cons. IT

leaders must now understand the breadth of options open to them in order to make the right decisions

about how to deal with legacy systems and applications.

Multiple Migration and Modernization Scenarios

Fortunately, legacy migration and modernization strategies have come a long way since the days of

vacuum tubes. The 2000s brought Service-Oriented Architecture (SOA) to the table, helping

organizations abstract legacy assets as Web Services. Today, the evolving notion of SOA has given rise

to modern Application Programming Interfaces (APIs).

Understanding the modern challenge of coexistence, therefore, depends upon properly learning the

lessons of SOA and APIs. While SOA was a mixed success, it unquestionably moved the modernization

ball forward. Not all migration and modernization scenarios take advantage of SOA lessons learned,

however. To illustrate these challenges, this paper breaks down such challenges into six basic scenarios.

mailto:agility@intellyx.com
http://www.intellyx.com/

Architecting Agility™

Copyright © 2015 Intellyx LLC | +1-617-517-4999 | agility@intellyx.com | www.intellyx.com

pg. 2

The illustrations below are simplified representations of each scenario, as the real world context is

inevitably more complicated. Nevertheless, most migration and modernization scenarios tend to follow

one or more of the following patterns.

The ‘lipstick on the pig’ scenario

The first two scenarios are dangerous oversimplifications – common failure scenarios that don’t

adequately address the complexities of modernizing a legacy environment.

First on the list: the ‘lipstick on the pig’ scenario. In this scenario the modernization team simply exposes

a legacy system via an API – with no consideration of new requirements the existing system cannot

deliver. This scenario is shown in figure 1 below (blue represents legacy assets, while yellow represents

new capabilities).

Figure 1: Lipstick on the Pig Scenario

This scenario is of limited value, as it offers little additional flexibility and no new functionality. However,

it was one of the most common failure scenarios for SOA initiatives, as many organizations incorrectly

assumed that simply exposing a legacy asset with Web Services was all that SOA was about.

The overly simplistic “heart lung machine” scenario

The second scenario is also an overly simplistic anti-pattern

that nevertheless became a common pitfall for SOA initiatives.

With this ‘heart lung machine’ scenario, the organization first

exposes legacy functionality with one or more APIs. Next, it

builds or buys a new system that has an API that precisely

matches the API of the legacy system – a goal that has

superficial appeal but is difficult to achieve in practice.

Next the team syncs the data between the two systems and

finally cuts over requests from the old system to the new one

seamlessly, thus relieving the legacy system of all its duties. At that point it’s simple to fully retire legacy

system. See figure 2 for an illustration of the ‘heart lung machine’ scenario.

MANY ORGANIZATIONS

INCORRECTLY ASSUMED

THAT SIMPLY EXPOSING A

LEGACY ASSET WITH WEB

SERVICES WAS ALL THAT SOA

WAS ABOUT.

mailto:agility@intellyx.com
http://www.intellyx.com/

Architecting Agility™

Copyright © 2015 Intellyx LLC | +1-617-517-4999 | agility@intellyx.com | www.intellyx.com

pg. 3

Figure 2: The ‘heart lung machine’ scenario.

This scenario sounds good but is difficult or impossible to implement in practice. Building matching APIs

is nearly impossible. Syncing the data may also be impractical, given the old and new data stores may

have incompatible architectures.

Furthermore, all access to the legacy system must take place

through the API for there to be any hope of a seamless

switchover – a requirement that is also difficult to achieve in

practice.

The basic augmentation scenario

The ‘basic augmentation scenario’ is the first of the six

scenarios that organizations have been able to use reliably to

solve real-world modernization challenges – although it also

comes with its own set of problems.

With this scenario, the organization exposes legacy systems (including legacy applications and databases

via existing stored procedures) via one or more APIs.

Then it adds a new system or enterprise application, for example, customer relationship management

(CRM), enterprise resource planning (ERP), or business process management (BPM) apps, each of which

has its own API. The APIs for old and new thus coexist. The basic augmentation scenario appears in

figure 3 below.

THE ‘HEART-LUNG MACHINE’

SCENARIO SOUNDS GOOD

BUT IS DIFFICULT OR

IMPOSSIBLE TO IMPLEMENT

IN PRACTICE.

mailto:agility@intellyx.com
http://www.intellyx.com/

Architecting Agility™

Copyright © 2015 Intellyx LLC | +1-617-517-4999 | agility@intellyx.com | www.intellyx.com

pg. 4

Figure 3: Basic Augmentation Scenario

Once the new application is operational, the team then coordinates the older and newer applications.

Such coordination can include publishing all APIs via the same API directory or marketplace as well as

composing legacy APIs with APIs from newer applications in order to build new, composite applications.

Challenges with the basic augmentation scenario arise, however, at the data layer. Data architects must

make a critical decision: either maintain entirely separate data stores to support the legacy APIs vs. the

new applications, or empower the new applications to access legacy data directly, as opposed to

accessing such information via the API layer.

Neither alternative is without its own risks. Maintaining

separate, coexisting data stores can lead to disparate versions

of the truth, thus complicating any master data management

initiative in the works.

However, allowing new applications to update data in legacy

databases directly as opposed to going through APIs is also

asking for trouble, since bypassing legacy business logic can

lead to consistency or governance issues, or in the worst

case, can actually corrupt data.

The basic modernization scenario
The lowest risk of all scenarios is the basic modernization scenario, but it’s not right for every

organization. In this scenario, the team exposes legacy applications and stored procedures as APIs. Then

over time, it adds new functionality to the legacy applications and updates the APIs accordingly.

Putting new code on old systems is not always feasible, of course – but in some situations, this

alternative provides the most cost-effective, low-risk approach to legacy modernization. The basic

modernization scenario appears in figure 4 below.

ALLOWING NEW

APPLICATIONS TO UPDATE

DATA IN LEGACY DATABASES

DIRECTLY AS OPPOSED TO

GOING THROUGH APIS IS

ASKING FOR TROUBLE.

mailto:agility@intellyx.com
http://www.intellyx.com/

Architecting Agility™

Copyright © 2015 Intellyx LLC | +1-617-517-4999 | agility@intellyx.com | www.intellyx.com

pg. 5

Figure 4: The Basic Modernization Scenario

There are a number of challenges with this scenario, however. It requires coding on legacy systems,

which often requires the skills of seasoned professionals who can be expensive and difficult to find. It

also requires the abilities of seasoned architects who understand the role the legacy system plays in the

modern environment.

The basic reduction scenario
The idea behind the basic reduction scenario is to transition functionality off of legacy applications to

newer applications, while allowing for the fact that the legacy systems will still likely continue to provide

some value even after this migration is complete, and thus must coexist with the newer applications.

This scenario begins much like the basic augmentation scenario, where the team adds new applications

alongside existing, legacy applications, and then coordinates their respective APIs. Once the new

applications are up and running, however, developers migrate key functionality from older to newer

applications. The basic reduction scenario appears in figure 4 below.

Figure 5: The Basic Reduction Scenario

In some cases the new functionality is identical to the legacy code it replaces, but more often than not,

migrating application functionality is a perfect opportunity to update the associated business logic to

meet new or changing requirements.

mailto:agility@intellyx.com
http://www.intellyx.com/

Architecting Agility™

Copyright © 2015 Intellyx LLC | +1-617-517-4999 | agility@intellyx.com | www.intellyx.com

pg. 6

However, changes to such logic can complicate interactions with legacy data stores, just as such changes

cause issues with the basic augmentation scenario. The main difference between these two scenarios,

however, is that with the basic reduction scenario, the migrated functionality must access either the

legacy data store or the new data store associated with the new applications.

As a result, many organizations must also migrate the data

corresponding to the migrated functionality – as well as the

associated data structure and metadata, including indices,

triggers, and stored procedures. Such migration can be

deceptively complex and error-prone.

The agile modernization scenario
The final scenario we’ll consider is the agile modernization

scenario. As with other scenarios, the team begins by

exposing legacy applications and stored procedures via APIs

and then adding new applications like CRM, BPM, or ERP

applications that also have their own APIs. Then like the basic

augmentation scenario, the organization also adds new

functionality to the legacy environment.

Over time, therefore, the team continues to modernize the legacy applications, while at the same time

maintaining and updating new applications, all the while coordinating their APIs. In other words, this

scenario provides the most flexible approach to coexistence of all the scenarios in this paper. The agile

modernization scenario appears in figure 6 below.

Figure 6: The Agile Modernization Scenario

In essence, modernization continues to take place in the legacy environment, while simultaneously

occurring among newer applications – giving the organization the most flexibility of any of the scenarios.

However, because this scenario maintains both old and new data stores that must coexist, and

furthermore, new functionality on the legacy systems may update the newer data stores, the

organization may run into the same master data management issues that the basic augmentation

scenario faces.

MIGRATING THE DATA, AS

WELL AS THE ASSOCIATED

DATA STRUCTURE AND

METADATA, INCLUDING

INDICES, TRIGGERS, AND

STORED PROCEDURES, CAN

BE DECEPTIVELY COMPLEX

AND ERROR-PRONE.

mailto:agility@intellyx.com
http://www.intellyx.com/

Architecting Agility™

Copyright © 2015 Intellyx LLC | +1-617-517-4999 | agility@intellyx.com | www.intellyx.com

pg. 7

Keeping both old and new data stores may not be the long term plan, however. The agile modernization

scenario is also an important intermediate step on the road to fully retiring legacy systems, and in

practice, is the most realistic alternative to the impractical ‘heart lung machine’ scenario.

Essentially, over time the organization relies increasingly heavily on the new application functionality. At

a particular point in time, then, the team cuts over from the legacy applications to the new applications.

However, just as with the heart lung machine scenario, such cutovers are easier said than done.

Because the team continues to add new functionality to the legacy environment, at some point it must

terminate such updates and transition all new code to the new environment – a challenge that may not

be feasible if the organization depends upon regular, continued updates in the legacy environment.

Transitioning the data can also present a problem, as applications continue to update the data in the

legacy data environment. This situation can lead to the forklift

problem: at some point in time, the team must move any

remaining data all at once to the new system, typically within a

maintenance window.

Because of these problems inherent in full migrations off of

legacy systems, even with the agile modernization scenario,

the coexistence state typically becomes the most satisfactory

final state. The bottom line: coexistence almost always trumps

full migration off of legacy systems.

Analysis: How to Decide which Scenario is the Right One

There is no one scenario that is right for every organization, and furthermore, each of the scenarios has

its advantages as well as its risks. Deciding the best approach for any particular company, therefore, can

be a difficult task in and of itself.

The most important starting point for making this decision is to understand the business pain points that

are driving the modernization/migration initiative in the first place. Only devote resources to efforts that

will address such pain points – in other words, ‘if it ain’t broke, don’t fix it.’

Many IT executives fall into this trap when considering the fate of legacy systems. They conclude that

because systems are older or leverage languages or other technology that may no longer be popular that

retiring such systems is a priority. In fact, maintaining legacy systems that coexist with newer systems on

an ongoing basis is usually – but not always – the lower risk and more cost-effective alternative.

That being said, decision makers should take the age and maintainability of any legacy system or

application into account when putting together their modernization strategy. Clearly, if hardware is

failing and irreplaceable or if the vendor of critical software is terminating its support for such

applications, then such factors should impact the decision to migrate.

The challenge of maintaining necessary skills is also an issue – but not a black or white one. Certainly

some legacy coding or operations skills are becoming nearly impossible to hire for, and no one wants to

learn them either, due to the fact that such skills are unlikely to be transferrable. But many legacy skills –

THE BOTTOM LINE:

COEXISTENCE ALMOST

ALWAYS TRUMPS FULL

MIGRATION OFF OF LEGACY

SYSTEMS.

mailto:agility@intellyx.com
http://www.intellyx.com/

Architecting Agility™

Copyright © 2015 Intellyx LLC | +1-617-517-4999 | agility@intellyx.com | www.intellyx.com

pg. 8

COBOL and CICS skills, for example – promise years of continued demand, as well as a healthy

community of practitioners.

It’s also important to consider the challenges as well as the opportunities of data migration. Migrating off

of legacy databases can certainly present numerous challenges, but also affords an organization the rare

opportunity to clean up obsolete or problematic data. Much as downsizing from a large house to a

condo is a rare excuse to get rid of the detritus of decades, so too is the opportunity that data

migration presents.

Finally, putting together the right API strategy and corresponding architecture is a critical success factor

for any migration or modernization initiative. APIs do not stand alone, but rather form the glue that

cements old and new together, as well as bringing together the full range of newer software capabilities

in the organization and beyond.

OpenLegacy’s solution platform can support and facilitate such

an API strategy. It provides the tools and features necessary

to enable developers to automatically generate APIs from

legacy on premise systems, edit and enhance those APIs, and

fully deploy to the targeted environments. Furthermore,

OpenLegacy’s management console offers security and role

management, performance and usage monitoring, and

automated API testing and verification.

Keep in mind, however, the lessons of the first two scenarios:

the ‘lipstick on the pig’ and ‘heart lung machine’ scenarios.

Both of these scenarios heavily depended on APIs, but were

nevertheless overly simplistic and thus typically unfeasible in

practice. One of the most important challenges, therefore, is

to avoid going down the wrong path.

Choosing the right path depends in large part on using the

right tools. The API quick enablement benefits that OpenLegacy can provide can make the difference

between an expensive, time-consuming failed legacy migration effort and a successful, cost-effective

migration/modernization initiative that leverages coexistence for ongoing business value.

When used properly, APIs provide a comprehensive abstraction layer that simplifies interactions with

legacy applications, modern enterprise applications, stored procedures, and cloud-based SaaS

applications.

But make no mistake – such simplification requires robust architecture, careful migration and

modernization strategies, and the right tools in order to increase the chances of success. Be sure to

leverage a tool like OpenLegacy to reduce risks and increase the chances of success for any legacy

migration or modernization initiative.

OpenLegacy is an Intellyx client. Intellyx retains full editorial control over the content of this white paper.

OPENLEGACY’S SOLUTION

PLATFORM PROVIDES THE

TOOLS AND FEATURES

NECESSARY TO ENABLE

DEVELOPERS TO

AUTOMATICALLY GENERATE

APIS FROM LEGACY ON

PREMISE SYSTEMS, EDIT AND

ENHANCE THOSE APIS, AND

FULLY DEPLOY TO THE

TARGETED ENVIRONMENTS.

mailto:agility@intellyx.com
http://www.intellyx.com/
http://www.openlegacy.com/
http://www.intellyx.com/

