

2

3

Accelerating the Digital
Journey from Legacy Systems

to Modern Microservices

Zeev Avidan
Hans Otharsson

Copyright © 2018 OpenLegacy

All rights reserved.

ISBN-13: 978-1987762822

Edition 1-B

4

5

Table of Contents

Introduction ……………………………………………….. 6

One: From Application Monolith to Microservices………… 11

Two: Microservices & SOA ………………………………... 21

Three: Microservices vs. APIs ……………………………… 27

Four: Anatomy of Microservices Architecture ……………. 35

Five: Microservices Best Practices ………………………… 39

Six: Cost/Benefit of Microservices …………………………. 58

Seven: Getting Started with Microservices ……………….... 65

Eight: Business Impact of Microservices & APIs ………….. 83

6

About the Authors

Zeev Avidan - Zeev has decades of experience

with legacy systems and legacy system

integration starting with his days as a

mainframe systems architect in 1996 where he

also designed and implemented Service

Oriented Architecture (SOA). From there Zeev worked on

mainframe integration for SRL and founded a services company with

special emphasis on integration and performance for the IBM i series

(AS/400). In 2011, Zeev began business consulting to financial and

governmental institutions on legacy systems and integration, and

also teaches courses on these subjects and uses his deep background

in the subject area to evaluate the technology and potential of start-

ups for Venture Capital firms. He joined OpenLegacy in 2014 and is

currently Chief Product Officer.

While the interest in microservices is fairly new and growing, Zeev

has been involved with the concept of microservices since the early

days of EAI and SOA. During the past 20 years he has seen first-

hand the pitfalls and challenges with integration and legacy systems

and believes microservices are a way to simplify and solve issues

from the past.

7

8

Hans Otharsson - Hans is a global leader in

legacy transformation programs with decades

of experience developing, enhancing,

maintaining, troubleshooting and transforming

so called ‘legacy applications’ and associated

environments. His global journey has taken him into countless

environments and business scenarios, where his “straight to the

point” approach has enabled him to bring true change and business

driven transformation to his clients. His ability to quickly assess a

situation and determine if an organization can bring value – and offer

suggestions for other alternatives if needed - has made him a trusted

advisor to numerous global organizations. Hans has many years’

experience with ‘legacy modernization’ in senior executive roles at

Consist Software Solutions, Ateras and also he founded

ModernWiser, a consultancy helping organizations understand their

legacy modernization options. At Software AG, Hans was

responsible for all Professional Services Sales & Delivery in North

America and Canada.

In his current role as Chief Operating Officer at OpenLegacy, Hans

is responsible for corporate operations and client success. These

dual roles truly capitalize on Hans’ strengths of quality delivery, a

customer first mentality, and solid industry experience - all of which

9

are truly echoed in his mantra of “we measure our success on our

client’s success.”

Introduction

The question answered by this book is this: “How do you accelerate

delivery of innovative digital services from monolithic legacy

technologies in a way that doesn’t add more complexity and layers?”

In short, how can IT deliver on the demands of the business?

To answer that question, we will describe the latest technologies and

approaches involving application programming interfaces (APIs) and

microservices, and end with many examples of how they have

worked for other organizations (chapter 8). Like the bank that

delivered a new payment processing system 50% faster than other

typical mainframe projects. Or the insurance company who could

finally compete in online price quote comparison engines.

Our discussion is somewhat technical but mindfully written to clarify

and demystify these concepts for both the IT and business audiences.

Our goal is to facilitate meaningful conversations around these

topics, building a bridge between these groups based on common

goals and understanding.

10

If you can’t offer digital banking services
via a mobile device, millennials will
download an app from a competitor and
be on their way.

While innovation and time-to-market have always been important,

the millennial market adds a new sense of urgency. They are

digitally impatient. They will not accept traditional banking

processes. They won’t visit a branch, fill out a form, then wait for

days and check their mail. Yet in many banks in many parts of the

world, this is still the onboarding process. If you can’t offer digital

banking services via a mobile device, millennials will download an

app from a competitor and be on their way.

Demands set upon technology grow in the same escalated scale as

the capabilities of technology. When technology becomes faster,

consumers want things faster. As a result, most organizations find

their business leaders requiring faster innovation, while the technical

leaders still face many of the same technical challenges.

These days, a “modern microservice” is a fundamental aspect of

legacy system integration. It is about reducing and bypassing layers.

It is about rapidly accessing the system of record and avoiding the

unnecessary middle layer. It is the realization of what we hoped

11

Services Oriented Architecture (SOA) would have brought us

decades ago. And, it is what we envisioned when we initially built

those legacy back-end systems of record. In short, the modern

microservice is the right approach that finds itself in the unique

position of being in the right place at the right time.

However, these days, there seems to be a lot of confusion around

microservices. Common questions include things as basic as “how

are they different than APIs” and “wait a minute, why does that

vendor definition sound different than this one over here?”

Truth is, it’s easy to be confused. Microservices have changed a lot

over the years, and vendors refer to microservices in a wide variety

of ways. So, what are they, should you care, and, if so, what can you

do about it?

First of all, we will be talking a lot about “legacy systems,” “legacy

monoliths,” and “application monoliths”. An accurate definition of

these legacy environments would be systems developed in the past

that still provide business value. They were built using the best

available technology at the time, but often don’t meet today’s

integration requirements and business needs. They are viewed as

complex silos of tightly coupled business logic that require

12

Unlike typical application monoliths,
microservices are small independently
deployed services focused on a specific
business function.

Unfortunately, many IT departments with
legacy systems, an ESB, or SOA still
struggle to be as agile as needed in this
ever-increasing global and digitized
world.

numerous abstraction layers to reduce and demystify so modern

DevOps resources can simply access those business systems.

Unlike typical application monoliths (Chapter 1), microservices are

small independently deployed services focused on a specific

business function. Programs written in the microservices style are

popular because they are easy to understand, develop, and test.

Developing an application made up of individual services means that

different teams can work in parallel. This makes it faster and easier

to release a collection of related microservices.

You may find yourselves asking, “But, wait a minute—weren’t

ESBs and SOA supposed to do that?” Yes, and in many cases they

13

succeeded. Unfortunately, most IT departments with legacy systems,

an ESB, or SOA still struggle to be as agile as needed in this ever-

increasing global and digitized world. In many ways, microservices

provide the benefit of SOA, while also removing many of the

disadvantages (Chapter Two).

Microservices align well with agile processes that support

continuous development and delivery. These aspects are needed in

businesses where frequent data and program updates are required

(Chapter Three). They are a natural fit for DevOps.

In the original use-case, microservices were an effort to push

modularity to a new level. They operated primarily as behind-the-

scenes components. Today’s modern microservices are frequently

customer-facing, highly integrated services used to create previously

impossible combinations of application functionality. In large part,

they leverage the capabilities of API contracts to interface with a

variety of back-end systems. Most importantly, modern

microservices can bypass layers of existing complexity and be

implemented far faster than earlier approaches (Chapter Six).

This book is for any IT, DevOps, or business leader in an

organization who is considering microservices as a way to quickly

14

May your digital journey lead you to IT
efficiency, faster cycles, greater scalability
and competitive differentiation.

and efficiently leverage legacy data in modern technologies. May

your digital journey lead you to IT efficiency, faster cycles, greater

scalability and competitive differentiation.

15

Chapter One:

From Application Monolith
to Microservices

If your organization can’t innovate fast enough to satisfy business

and competitive demands, consider a microservices approach to your

application monoliths. If you’re asking yourself, “what’s an

application monolith?” you’re probably running one right now.

Typically, an IT department develops an application — usually a

single core application or a number of related applications — and

combines all the elements into one system as shown in Figure 1.

Figure 1. An example of an

application monolith, where

multiple elements and functions

are combined into one application.

For example, functionality is

mixed together in one big

application; you might have a

payment application that would include the customer information,

16

payment transactions and additional functions such as reporting and

security. Sometimes this approach has benefits, and some

applications are simpler to develop in this way. On the other hand,

monoliths create a lot of inefficiency and code-usability challenges.

Slow Releases – The Enemy of Velocity

While this monolithic approach may have worked in the past, the

world has changed. Most organizations have numerous development

teams, all trying to create, update, and test their code before release

(Figure 2).

Figure 2. Application monoliths are mostly incompatible with

today’s Agile and DevOps environments. The build, test and release

17

cycles are usually far longer than what is required for velocity and

scale.

Releasing to production once or twice a year used to be the norm,

but it no longer serves most businesses in today’s fast-paced global

economy. Businesses rely on Lean and Agile approaches when they

need faster release cycles — yet, the application monolith is the

enemy of such velocity.

Problems with Shared Code and Data

An application can be monolithic if you have software coupling,

such as shared code or shared data (see Figure 3).

18

This inter-connected “house of cards” is
precisely why most organizations find it
difficult to innovate with legacy systems.

Figure 3. In a typical application monolith, different modules may

share the same code or data. Therefore, any change to that code or

data requires testing of the entire monolith.

Shared code means central routine data is shared through the

application by many modules. For example, a credit card company

likely has a central digit validation routine that checks the validity of

the digits on a credit card. Nearly every module in the application

can use this routine — whether it is the approval process, the alert

system, or the customer statement — because everything needs to

check that the card number is valid. Consequently, if you make a

change to this central routine, then you have made a change to each

and every function of the application. If something goes wrong with

this module, then the application fails.

Shared data poses a similar problem. For example, customer

information is used by many components of the monolithic

application. Sharing both code and data results in very strong

19

coupling. Although it is simpler to maintain one code base or one

database, it is harder to make and manage changes.

Since change can be unpredictable, companies need extensive and

time-consuming testing — often taking months — to make sure that

code changes are stable enough to go into production. In fact, this is

such a huge concern that some organizations will avoid fixing bugs

because they are concerned about the aftermath.

This inter-connected ‘house of cards’ is precisely why most

organizations find it difficult to innovate with legacy systems.

No Scalability

To improve scalability, companies have tried to break the monolith

into major application components that run on different server

images or platforms. However, many applications are so coupled

with code and data that they cannot easily be modernized. It is not

possible to deploy one component of application functionality in one

place and another piece of functionality somewhere else. This puts a

cap on scalability.

20

Scaling issues, lack of agility, long release cycles, slow innovation,

complex changes, and risk management are all well-known

challenges of the monolith (Figure 4).

Figure 4. Typical challenges of the legacy application monolith.

What is a Microservice?

Microservices are an application architectural style that is a little

more than a decade old and interest and adoption has been growing

rapidly (Figure 5).

21

Figure 5. Interest in microservices architecture has grown rapidly

since 2012 as a way to solve common problems with application

monoliths. Source: Google Trends

The idea of microservices emerged from experiences with service-

oriented architecture (SOA). Unlike SOA, microservices structure an

application as a collection of independent services that are narrow in

scope and communicate using protocols that are very efficient.

Boiled down to their essence, microservices are a formal

architectural style for decoupling business functions from a

monolith. When you also encapsulate an Application Programming

Interface (APIs) in the microservice, you avoid many pitfalls of

monolithic designs.

For example, data and processes are often locked up in current

systems of record, such as the customer information and credit card

verification process utilized in your application monoliths.

Microservices include APIs that are purposefully limited in their

functionality. For example, a payment system would not exist inside

of a microservice. Instead, the payment system would be comprised

22

of a mesh of microservices – one to get customer details, one to

transfer money, and so on. Each service is loosely coupled, allowing

the overall application to function even if one service went down,

allowing different services to exist on different servers and different

clouds, or allowing different components to scale independently

(Figure 6).

Figure. 6 Whereas a typical application monolith is tightly coupled,

microservices decouple independent business functions into separate

services so that changes to any one function will not interfere with

the other functions.

Breaking Up Is Necessary Sometimes

23

Breaking up an application into different smaller microservices

improves modularity and makes the application easier to understand,

develop, and test. It also enables parallel development by allowing

small autonomous teams to develop and deploy their services

independently. Lastly, microservices allow the function of an

individual service to emerge through continuous improvement

supporting continuous delivery and deployment.

Microservices Speed Development on Legacy Applications

The major benefit of microservices isn’t just the speed of

development, it’s the concurrency of development. Developers can

work on different parts of the same application at the same time.

This has tremendous benefits for companies working with legacy

applications.

Modern application development demands a speedy pace, but

working with legacy applications is usually slow and laborious.

Microservices remove that burden. It is possible to expose business

functions via a microservice, if you consider the legacy application

as a data store, where you encapsulate the application logic (business

functions) within an API. In this manner, it’s possible to use the

COBOL output of a legacy application in a format that’s

understandable by a REST API.

24

The major benefit of microservices isn’t
just the speed of development, it’s the
concurrency of development.

Developers can create other microservices representing features

related to the legacy application and connect them to the legacy

application without writing or modifying any legacy code. In this

way, it’s possible for one development team to work on speedily

adding new features to a legacy application, and another team to

work on maintaining the legacy codebase. All the while, neither

team needs to communicate or slow down their work based on the

demands on the other. Microservices enable rapid development for

projects involving legacy applications.

Monitoring Microservices

Before the microservices era, it was common for developers to create

a single monolith featuring hundreds of APIs, and then run those

APIs in a single container. The drawback to this has been discussed

above – if one single component went down, the entire application

would follow. On the other hand, one (extremely faint) upside to this

was that it was relatively easy to monitor the condition of the

application, since it was all in one place.

25

In the era of modern microservices, it’s possible to have an

application that’s comprised of hundreds of services. Some of these

services may not be in the same server, or in the same cloud. While

the resulting application will be extremely fault-tolerant, it’s worth

asking how to monitor your microservices before switching to that

approach. Consider finding a software vendor or solution provider,

such as OpenLegacy, that’s equipped to do analytics and monitoring

on hundreds of microservices running in parallel.

With these benefits in mind, it is no surprise that leading industry

analysts are suggesting organizations take a closer look at

microservices. Forrester writes that microservices have an

important role in the future of solution architecture1, highlighting

faster software delivery, greater operational resilience and scalability

and better solution maintainability as the main benefits. Gartner

indicates that microservices architecture enables unprecedented

agility and scalability.2

1 Forrester, Microservices Have An Important Role In The Future Of Solution
Architecture, July 2015
2 Gartner, Innovation Insight for Microservices, January 2017

26

27

Chapter Two:

Microservices & Service Oriented
Architecture (SOA)
When discussing the advantages of a microservices architecture

compared to monolithic applications, it’s easy to wonder why no one

took this approach in the first place. After all, upwards of 90% of

enterprise applications in the world today are monolithic.

At the time they were created, monolithic design was simply the best

approach available to meet technology and business needs. However,

as business needs have evolved and the demand for greater agility has

intensified, developers and IT teams have been tasked with breaking

free of these monolithic architectures.

The resulting approach, at least in recent years, has been a service-

oriented architecture (SOA). However, while SOAs solved many

problems, they didn’t solve them all. The term “microservices” is a

subset of SOA terminology (Figure 1).

28

Figure 1. Microservices and APIs can be thought of as a subset of

Service Oriented Architecture.

The SOA Integration Challenge

The promise of SOA initiatives was to extend the reach of core

business functions while reducing the internal expenses and

complexity that grew alongside monoliths. SOAs would achieve these

goals by breaking the core functions of a monolith into web services

using protocols like simple object access protocol (SOAP) and

eXtensible markup language (XML).

SOAP was built for universal application communications. Because

it’s based on XML, SOAs designed with SOAP could, in theory, be

used to create an agnostic integration layer. Rather than struggling to

piece together various proprietary systems, these protocols would

29

When it comes to serving customers –
and their rapidly changing demands –
SOA isn’t always up to the task.

open monoliths on different operating systems so they could work

together.

An agnostic integration layer would let system administrators connect

pieces of a monolith to an enterprise service bus (ESB) to achieve an

agile, plug-and-play SOA. In some cases, this approach succeeded.

There’s a great deal of so-called “legacy SOA” out there in the world

which still provides value. In these cases, however, the value that

SOA provides is in behind-the-scenes server-to-server communication

that mostly aids developers. When it comes to serving customers –

and their rapidly changing demands – SOA isn’t always up to the task.

The problem is that the ESB oversees the messages that achieve

service integration to reach their destination. This communication

isn’

t as

sim

ple

as

the

SOA vendors may have promised.

Take, for example, an SOA integration approach with a core banking

application. This involves a message going from your core application

on your mainframe to a branch office server. If the business logic

states a message is only relevant for one business day, administrators

30

must decide whether it must be moved to a queue, logged, or

disregarded when the day passes. This is a common scenario for core

banking applications in an SOA, but how well does it work?

In this example (and others like it), the ESB must know whether a

business day has passed or not to make the right decision about where

to send the message. This means the integration requires an algorithm.

Even if it’s a simple algorithm, the ESB can’t simply rely on a

universal rule for sending messages between the monolith and

external integration.

When administrators introduce new business logic into the monolith

integration, it turns what was supposed to be an agnostic service layer

into a new application layer thus increasing complexity. Instead of

simply integrating the monolith into a new digital service, the

enterprise ends up with a larger monolith — one that includes the

mainframe and all the new integration stacks that have been added.

Despite the promises of SOA, the integration problems result in

increased time spent on maintenance, greater complexity of code and

software, and the continued growth (not elimination) of monolithic

applications. The first rule of effective integration is “smart end-points

and dumb pipes.” Building logic and layers into the service layer

breaks that rule, adds to the overall complexity, and adds another

legacy application to your portfolio.

31

Trying to optimize the SOA approach will only result in larger

monoliths. Taking a new approach with microservices architectures

will help realize the original promise of SOAs (Figure 2).

Figure 2. Microservices deliver on the original promise of SOA.

Improving SOAs with Microservices

For two decades, CIOs have tried to transition away from monoliths

by taking traditional approaches to integration, only to find they’ve

doubled down on legacy investments. All of these integration stacks

end up coupled to legacy systems and only result in more work for the

IT team — and a less agile organization.

The integration step of SOA was never intended to include business

logic. Trying to force business logic into this approach leads to

workarounds and extra effort just to achieve a less-than-ideal result.

32

The key factor here is how to incorporate microservices without

adverse effects. Luckily, microservices architecture can be forged

from SOAs by introducing new principles.

One of these principles is context mapping. When replacing an

existing SOA, teams must consider the size and scope of the new

microservice and apply proper contextual boundaries. For example,

SOAs that typically sought broad integration with digital services

should be broken down into smaller domains to simplify operation.

Another key principle is the idea of a shared-nothing architecture. Too

many SOA integrations create sprawling dependencies that create

complexity in the tech stack. Microservices avoid these cross-service

dependencies. For those looking to move to microservices from an

existing SOA, it’s important to look at the list of dependencies and

work toward standalone functionality.

Ultimately, the goal should be to refactor monoliths in a way that

shifts the IT stack toward microservices. If you take the right

approach, you can make the most of both microservices and APIs

within your SOA.

33

Chapter Three:

Microservices vs. APIs

We’ve already explained how to differentiate SOAs from

microservices, but differentiating APIs from microservices is a whole

other question. Businesses are asking themselves the question, “will

microservices allow us to create more valuable products?” They’re also

asking if it’s necessary to master APIs before pursuing a microservices

approach. Perhaps that is not even the best question. Both CEOs and

technology buyers will use microservices and API terminology

interchangeably. The difference is not simply an academic question,

however (Figure 1).

Figure 1. All microservices include APIs, but not all API’s are

microservices.

34

The fundamental concept behind a
microservices architecture is to break up
your application(s) into many small
services.

The difference between microservices and APIs is important for

businesses that are beginning to plan their participation in a more

digital era. You can implement microservices without exposing APIs,

and you can create APIs without using microservices. The option you

choose depends largely on your business needs.

So let’s try to be clear here on the differences and similarities of APIs

and Microservices. The fundamental concept behind a microservices

architecture is to break up your application(s) into many small services.

Each of these services will typically have its own:

● Distinctive business-related responsibility

● Execution Process

● Database

● Versioning

● API

● UI (User Interface)

35

A microservice should expose a well-defined API (Figure 2).

Figure 2. There are times when an API is sufficient – and preferred –

and times when a microservice is better. A microservice will expose an

API, but also include other elements.

 Microservices is the way you want to architect your solution, while the

API is what the consumer sees, keeping in mind you can expose an API

without a microservices architecture.

A rule of thumb to follow is to keep your services small and have lots

of small services versus building larger services. Then you need to

understand that a microservice can use a representational state transfer

(REST), message queue or any other method to communicate with one

another, so REST is orthogonal (independent) to the topic of

microservices (Table 1).

36

Table 1. When to choose microservices, APIs or both.

API Microservices Application Status

Your application is slow to
change and difficult to
integrate with. Time to
market will be slow, and this
application is not truly an
asset to your Digital
Transformation Initiative.

Your application is still slow
to change, but it is now easy
to integrate with. Meaning
your time to market, your
ability to access this legacy
application is easy and fast.
This application now can be
an effective contributor to
your Digital Transformation
journey.

Integration nirvana – your
application is easy to change,
rapid to integrate. Most
importantly your ability to
add on top of your legacy
application new products and
services is optimal.

Microservices a Streamlined Architecture for APIs

37

From a developer perspective, microservices are an approach that

enhances the performance, and thus the value, of the APIs and

applications they create. Remember that at its heart, an API is still just

a contract. The API receives a certain input and delivers a certain

output. Depending on whether the API is built with microservices

architecture, that output will arrive in a certain way. Microservices

impose a set of rules on APIs that make them simpler, more modular,

and more functional.

Microservice API

One function Many functions

One data store Many data stores

Simple communications Complicated pipes

One Function vs. Many Functions

A standard API might be built to behave several ways. For instance, it

might accept one kind of input, such as a customer phone number, and

it could return a customer’s ID and address. If you give the same API a

customer ID, it might return their credit card and phone number, with

further different outputs depending on what other information it gets.

Microservices strictly limit the kind of information that an API can

return. A microservices API will only return one or two pieces of

information depending on the input. A different microservice handles

anything else. The reason for this rests on the way that microservices

38

relate to their data stores.

One Data Store vs. Many Data Stores

For an ordinary API to return so many kinds of data, the component

implementing it might have to connect to many different data stores.

This is where APIs can begin to slow down the development process. If

one of those connected data stores is updated, it may change the

information that gets returned, and vice versa. If more than one API is

connected to the same data store, any changes will affect both.

Microservices return only one or two kinds of data, and the best

practice is to connect them to only a single data store. This way, a

development team needs only test a single API before pushing changes

into production. This eliminates cross-functional disputes and prevents

duplication of efforts.

Simple Communications vs. Complicated Pipes

Once their information is retrieved, APIs need to do something with it.

Sometimes this means just transmitting the information to the end user,

but more often this means it’s handed off to another automated system.

In an ordinary application, the API can call any data store or any other

API as determined by the underlying application logic. This necessarily

makes the application more tightly tied together, less modular, and

more monolithic.

In a microservices architecture, the application logic tied to a particular

API can only call on other APIs. This simplified communication

39

A simple API in a microservices
framework can be created in one day
using proven technologies.

prevents the application from breaking when a microservice is changed

or removed. This added flexibility further simplifies and streamlines

the development process.

An ordinary API implementation stands by itself. It can accept any

commands, connect to any database, and make calls to any other

application or service. This seeming flexibility, however, can actually

make applications more monolithic, less flexible, and more difficult to

work with. By contrast, microservices encapsulate APIs with a set of

rules and components that ultimately liberates applications from

monolithic constraints.

In summary, companies are beginning to realize that simply having

APIs doesn’t make them an especially innovative or forward-thinking

organization. If it takes four months to create and implement an API,

then there’s no inherent velocity in development. Microservices change

the conversation. A simple API in a microservices framework can be

created in a day using proven technologies.

40

Depending on their requirements, companies that adopt microservices

right now will have an enormous first-mover advantage over companies

that rely on traditional APIs. Microservices adopters will be able to

build applications with more intrinsic value and add features faster than

their competitors. In other words, if you haven’t considered

microservices already, be prepared for that to change very soon.

41

Chapter Four:

The Anatomy of
Microservices Architecture

A microservice is built in a specific way that incorporates three parts:

The API itself, an application logic unit, and a data store (Figure 1).

Microservices architecture allows for some variation within this

blueprint while adhering to the following precepts.

Figure 1. A microservice includes three parts: a data store, application

logic, and an API.

Microservices Anatomy: The API

Every microservice includes an API, but that API has to be written in a

specific way. The microservices architecture favors extremely narrow

and specific tasks, and so the embedded API will usually have just one

role, representing a public contract. For example, the contract for an

42

The microservices architecture favors
extremely narrow and specific tasks, and so
the embedded API will usually have just
one role, representing a public contract.

agent desktop might involve an API that provides a customer’s name,

telephone number, and address when given their customer ID.

Some APIs may have an expanded role – say that the customer forgets

their ID, so the agent can retrieve it by providing the customer phone

number instead. Going much beyond this usually represents bad

practice, however.

In addition, the API itself should retain past functions when given new

ones. In other words, the development team may decide to improve the

functionality of their API, but they can’t replace it. Doing otherwise

may break workflows or cause cascading failures.

Microservices Anatomy: Application Logic

In microservices, the application or business logic component adds a

measure of intelligence to the API. For example, imagine an

ecommerce platform built on microservices. A customer clicks on

“place an order”. This signals one microservice to check that the

customer creating the order has a valid account, billing information,

43

and address. Once this is finished, the microservice needs to pass on a

certain amount of information:

o Was the application able to validate the customer?

o If no, why not?

o If yes, call the next microservice in sequence to create an

order.

Microservices Anatomy: Data Store

Best practices for microservices architecture holds that microservices

never share data – a microservice encapsulates its data store, and other

APIs will never call that data store directly. This lets developers make

changes to their data stores without creating affecting other

microservices, greatly speeding up the development and testing

process.

Another cardinal rule of data storage in microservices is to use the

database or databases which best suit the use case of the microservice

itself. This allows developers, for example, to use both a SQL and a

NoSQL database within the same application, retaining the benefits of

NoSQL without giving up ACID (atomicity, consistency, isolation,

durability) transactions and other positive aspects of relational

databases. This is mirrored on the API side, with polyglot programming

enabling application logic and APIs to be written in whichever

languages add the correct blend of functionality and efficiency.

Microservices are Like A Mini-Application

44

In summary, a microservice can be thought of as incorporating the

aspects of three-tiered client-server architecture commonly used in web

applications such as ecommerce: a presentation layer, a business layer,

and a data layer.

o The Presentation layer - which is the mechanism that is

used to frame the communication in a three-tier architecture.

The API, in the Microservices paradigm, is the contract

which defines the mechanism of communication.

o The Business Layer - functions the same within a 3-tiered

architecture and a Microservice architecture. It coordinates

the start and end of tasks and activities along with managing

the communication with other services.

o The Data Layer - manages the packaging and exposure of

the information (data) to the logic of the Business Layer,

which in turn is passed to the API (Presentation Contract)

Although the three-tier application contains layers of horizontal

separation, microservices add vertical dividers, exposing themselves to

other microservices only through the presentation logic layer. This is

the major anatomical difference between microservices and monolithic

applications. By closing themselves off from the rest of an application,

microservices can be administered by a single team over their entire

45

lifetime, eliminating the possibility misplaced business logic,

duplicated efforts, and other negatives.

46

Chapter Five:

Microservices Best Practices

Microservices approaches have evolved to become far less complex

than they were a few years ago. Instead of modules preoccupied with

connectivity and message passing, modern microservices are data

applications that can be created more easily than in the past, then used

stand-alone or combined into applications using APIs. They make

important data and processes available in new ways without disrupting

the systems of record that they access.

When you invest in modern microservices, you should expect scaling

with ease, rapid release cycles, simpler changes, increased agility,

faster innovation and lower risk. These motivations are behind these

seven rules of microservices:

1. Bypass layers where possible

2. Access only public APIs

3. Use the right tool for the job

4. Secure all levels

5. Be good citizens yet have great police

6. This is not just about technology

7. Automate everything

Rule Number 1: Bypass Layers Where Possible

47

Many readers may perceive or have first-hand experience of integration

microservices as being complicated to create. Whereas in the past

microservices creation required navigating through the complex layers

of your existing architecture (Figure 1), modern microservices bypass

these architectures to connect directly with your monolithic legacy

systems, such as mainframes, midrange systems, and databases (Figure

2).

Figure 1. Typically, integration microservices have been hard to

create, largely due to complex, manual effort.

Some software (such as OpenLegacy) consumes the logic of the legacy

system so that the best method of connecting to the system can be

determined. Then at run-time, that information is used with pre-built

connectors to automatically connect with the legacy system, and bypass

as many layers as possible (see Rule Number 3 – Polyglot Back-End).

48

Figure 2. Some vendors (such as OpenLegacy) bypass architectural

layers to connect directly with existing monolithic, legacy systems.

Furthermore, many manual processes are automated thereby

simplifying and speeding the process.

Microservices can be created very quickly and without complexity, and

without special programming skills such as COBOL or RPG, or

invasive changes to underlying systems.

Since the value of microservices can’t be achieved without first

creating them, this point can’t be overstated. In our experience, the

biggest hurdle for organizations adopting microservices or APIs for

legacy monoliths is the time and effort for creation.

Rule Number 2: Access Only Public APIs

Delivering new business applications using Public APIs is

fundamentally changing how software is created and delivered to the

49

market. The public API, built with REST or SOAP, has a contract

governing its access, so the rule is that you must only interact with the

contract of the microservice. This is important because for a

microservice to be coupled or combined, it has to be utilized in a

specific way to preserve its modular aspect. When using the service

contract, you avoid problems that could arise from reading the service’s

database or message queue directly. If you bypass the contract, you are

dependent on the physical attributes of the service and can run into

problems when there is a change of the code in the microservice

(Figure 3).

Figure 3. Only interact with the API contract of the microservice.

Otherwise, you may run into problems if there is a change in the

microservice code.

50

How does a microservice change and evolve? There is a process for

changing and growing the microservice. This is handled through

versions of the contract, so organizations can have some applications

that use one version of the contract whereas other applications will use

a different contract.

For example, microservices can break up an application into functional

components, which are combined with other microservices to create an

external API. By creating this kind of “function network”, these

combinations of microservices utilize a SDK to access the legacy

system like a mainframe. These microservices are used to create new

business applications. The new contracts they use are not on the

mainframe, but rather inside the microservice itself that accesses the

mainframe.

Having a function network makes it easy to change, enhance and add

new business logic. Modern microservices create a layer of protection

and abstraction on top of the legacy system. At the same time, they

give users a lot of flexibility and agility without changing the legacy

application.

Rule Number 3: Use the Right Tool for the Job

Many organizations are starting to adopt the best-tool-for-the-job

approach by developing an integrated collection of supported products

and technology. This may include a “must use” list where there is one

main tool that you must use to address a specific need. There is also an

51

“available list”, which is a list of approved alternative solutions.

Programmers can pick and choose whichever tools or product best fits

their needs — SQL database, sequential file system or in-memory data

system. This is known as polyglot persistence (Figure 4).

Figure 4. Polyglot persistence enables developers to choose the right

tool for the job.

Making the right choice with a programming language is just as

important as choosing the right data-management option. Choosing the

best language to complete the task is known as polyglot programming.

Just because an organization has made a commitment to a specific

programming language should not mean that programmers must do

every procedure in that language as long as they properly invoke the

microservices using its contracts. For example, in some applications,

even though Java might be the company standard, C or javascript may

be the best choice (Figure 5).

52

Figure 5. Polyglot programming means programmers can choose the

right programming language for the job.

The polyglot backend rounds out the trifecta of polyglot architectures.

This allows microservices to flexibly access one or more back-ends in

the microservice depending on the needs of the application being

developed (as described in rule number one). The polyglot backend

does not take the form of an integration layer, but instead is a pure

microservice implementation without microservices washing – the

practice of selling a product as a microservice when it doesn’t actually

fit microservices characteristics (Figure 6).

53

Figure 6. Polyglot backend capability is a powerful feature because the

back-end can be a variety of sources like a mainframe, midrange

system or relational database on a distributed platform. Support for

diverse back-ends makes it possible to create microservices with

significant ability to integrate data and processes from previously

disparate sources.

Rule 4: Secure All Levels

Since microservices are separate runnable units, they do not enjoy some

of the benefits of a security framework, which are shared by all

components in a monolithic application. Because there is often not a

shared security mechanism, developers compensate for this shortfall by

running the microservice behind an API gateway1 which supplies a lot

of functionality while also playing the role of a firewall.

When an API gateway is implemented, many organizations assume that

everything behind the API gateway is secure. Once a cyber threat

54

penetrates the gateway, there are no additional security mechanisms to

challenge it. Microservices require an in-depth defense that is not

limited to one layer of security. Communications between

microservices should be protected using encrypted SSL.2 oAuth3

should be used for user identity and access control. It is important to

properly handle JSON.4 This protocol replaced XML but has weak data

typing capabilities. JSON has limited features to help with data

validation, which means that JSON has vulnerabilities that must be

addressed by logic in the microservice (Figure 7).

Figure 7. Due to their unique nature, microservices require multiple

levels of security.

 Another secure-all-level strategy is never to allow microservices to run

on the public network because it typically is not secure. Additionally,

programmers need to embrace certain guidelines, such as logging every

55

significant event, implanting automated monitoring, and generating

alerts when needed. Programmers don’t need to reinvent the wheel in

terms of their security, development, and systems management

solutions. Instead, they should use trusted tools and frameworks with

which they are already familiar. Examples include:

o Apache Log4j - A fast, reliable, and flexible logging

framework written in Java

o oAuth - Open protocol to allow secure authorization for REST

APIs, web, mobile and desktop applications

o EhCache – Widely-used open source Java distributed cache

engine

o Angular - Open source development platform for web

applications

o Freemarker - Open source, Java-based template engine.

Templates are a structured format, created by Freemarker,

where programmers enter data when generating entities

In addition to the other security considerations discussed — firewall,

SSL, JSON, use of a public network, logging, monitoring and alerting –

some vendors (such as OpenLegacy) have a feature called in-service

security. This adds another secure layer to every microservice in an

application by building upon LDAP and oAuth authentication. That

layer provides data-structure security by restricting access to specific

API fields according to the security level. It adds data-content security

by restricting access to data values according to the security level.

56

Figure 8. Security needs to be implemented at the service level.

Rule 5: Be Good Citizens, Yet Have Great Police

Being a good citizen of the microservice ecosystem means that when

you write a new microservice that uses the contract of another

microservice, you should be aware of the current usage of that

microservice. You should approach the team supporting that

microservice to tell them of your plans and needs. If you plan to use it

extensively, you might impact their SLA5 and they will have to take

steps that might include increasing pool data size or enabling caching6

(Figure 9).

57

Figure 9. Being a good citizen means that developers should work

together when their microservices are used together as part of new

business function for the company.

You need to be a good citizen, but you also need great policing tools.

You need to measure SLAs, collect logs & traces and throttle7 unruly

workloads. It is also important to collect both internal metrics (‘which

services were involved and what is their response times?’) and user-

experience metrics (‘how long from click to data?’).

When your microservice interfaces with mainframe applications and

data, you should take actions to protect the monolith. Not only does

each microservice keep logs and provide tracing ability, but also there

is a caching mechanism that improves the performance of searches by

keeping the most frequently used data in memory. When too many

58

requests are sent to a host, some software can specifically throttle

access to the monolith. The throttling feature can limit the number of

requests that a single client can send to the application APIs per time

unit (Figure 10).

Figure 10. Both caching and throttling are tools used to minimize the

impact of the microservice on the monolith.

Rule 6: It’s Not Just About Technology

Before developing microservices, consider the organization of your

team. Microservices thrive when you organize as a cross-functional

team8 where each team has any number of different skills and these

teams are as self-sufficient as possible. Martin Fowler says that “siloed

functional teams lead to siloed application architectures” (Figure 11).

Cross-functional teams work better with microservices APIs because

they are organized around the capabilities they are creating and

managing (Figure 12).

59

Figure 11. Siloed functional teams lead to siloed application

architectures.

Before developing microservices APIs, consider the skill set of your

team. Java is an important skill to have on the team, but other language

and middleware skills are also needed. For example, some tools

automatically generate microservices in Java, and Java skills are

required only when you want to change the standard output of a

microservices API. Surprisingly, because the legacy application and

data access are handled automatically, the microservices

implementation team does not have to include legacy skills. This means

that the number of cross-functional teams is not limited to the number

of legacy-skilled people and the labor pool is therefore much bigger.

60

Figure 12. It is important to organize teams around business functions

they develop and deploy as microservices so the development can be

fast and responsive.

Agile approaches9 to development are a natural fit for microservices.

The cross-functional team can rapidly create the public APIs that result

from their microservices. DevOps10 is also a good fit for microservices

as both developers and support technicians belong to the same cross-

functional team. Being on one team also breaks down any

organizational barriers that inhibit the use of common tools and

procedures.

Rule 7: Automate Everything

Automation is a proven way to improve quality and lower risk in IT.

Gartner11 writes that automation is the next IT frontier. Testing is a

good candidate for automation because, during microservice

development, manually repeating the necessary tests is costly and time-

consuming. Automated software testing can reduce the time to run

61

repetitive tests from days to hours, providing more comprehensive and

consistent results.

Automation leads to a much more robust IT environment as well as a

greater opportunity to change software in a low-risk way. Some

microservices vendors are inherently more automated than others. For

example, some vendors make it possible for the deployable units - the

actual microservices themselves - to be standard Java entities. There is

nothing proprietary about them — they are exactly what an experienced

Java programmer would create.

Additionally, with these types of microservices, solutions like Jenkins

and Maven are available for you to use. With Jenkins, you can

automate many parts of the software development process by making

use of continuous integration and continuous delivery steps. With

Maven you can manage a project's build, reporting, and documentation.

Jenkins and Maven are just examples. When choosing a microservices

vendor or tool, look for a solution where no proprietary deployment,

testing, or versioning solutions are needed, and you are encouraged to

use whatever best-practices open-source solution you find best (Table

1).

Table 1. Sample of the Technology Stack of the Tools that are used to

create, manage and deploy microservices (using OpenLegacy as an

example).

62

Tool Description

Spring Spring is an application framework used

to build simple, portable, fast and flexible

JVM-based systems and applications.

SonarQube SonarQube, a continuous code quality

tool, provides the capability to show the

health of an application as well as to

highlight issues that may have been

newly introduced.

Jenkins Jenkins is an open source automation

server that provides hundreds of plugins

to support building, deploying and

automating any project.

Maven Apache Maven is a software project

management and comprehension tool that

can be used for building and managing

any Java-based project.

Git Git is an open source distributed version

control system designed to handle

everything from small to very large

projects with speed and efficiency.

63

Sonatype

Nexus

Sonatype Nexus is a tool to organize,

store, and distribute software

components.

Cloud

Foundry

Cloud Foundry is an open source cloud

application platform for developing and

deploying enterprise cloud applications.

It automates, scales and manages cloud

apps throughout their lifecycle.

It is important to use a standard technology stack because the

technologies are tested. There is also a good deal of expertise and

documentation available on how to set them up properly to ensure

security and high performance. Certain development situations may

call for a faster or more robust database. Or there may be contractual or

regulatory requirements for certain types of hardware, operating

systems, and server software. These cases are rare, and most

microservices function well on a standard technology stack.

The best practices in this chapter are common sense measure, but some

will require cultural and technology changes in the IT organization.

“Access only public APIs” and “secure all levels” focus on prudent

measures to protect data resources. “Using the right tool for the job”

and “this is not just about technology” likely require organizational

change to be impactful. “Be good citizens yet have great police” and

64

“automate everything” focus on a mix of organization and technology

measures that are easy to implement by following IT procedures.

1 API gateway – API management, Wikipedia

2 SSL – What is SSL?, SSL.com
3 oAuth – oAuth, TechTarget.com

4 JSON – JSON, JSON.org

5 SLAs – Service-Level Agreement, Wikipedia
6 Caching _ Cache (Computing, Wikipedia

7 Throttle – Throttling Process (Computing), Wikipedia
8 Cross functional team – Want to Develop Great Microservices? Reorganize Your

Team, TechBeacon

9 Agile approaches – Agile In a Nutshell
10 DevOps – The AgileAdmin, What is DevOps

11 Gartner – Automation: The Next Frontier for IT, May 2016

65

Chapter Six:

Microservices Cost/Benefit

We are focusing on how microservices can better enable legacy

applications to be assets -- not speed bumps -- in your digital journey.

As such, microservices can benefit both the IT and business

organizations.

Despite the benefits of a microservices strategy, it’s important to be

sober-minded about pursuing it, because adopting a microservices

architecture is similar to the adoption of any relatively new software

discipline. If you are building and deploying microservices, you will

need the appropriate environment and staff. By no means is this an

extensive or surprising list, but, here are a few things to consider when

considering microservices, similar to any new technology or

methodology.

Development of Microservices Architecture

Determining the cost & value of microservices projects isn’t wildly

different from other projects, but there are unique factors to consider.

Here, for example, are just a few of the “getting started” expenses that

might be incurred:

1. Personnel Costs: Not all developers will be familiar with the

microservices architecture.

66

The reductions in maintenance expenses
alone should be enough to pay for the up-
front cost of microservices within a few
years.

2. Organizational Expenses: Microservices architecture performs

best when administered by small, cross-functional teams.

3. Tools: Containerization and other supporting technologies.

Rule of Thumb – Depending on where you are starting from, the

“Getting Started” costs might be budget concern, but the downstream

benefits will be significant. Adoption of a microservices architecture

will quickly defray those costs by returning large amounts of business

and technical value.

Maintainability & Ongoing Operational Costs

The first part of value generation comes in the form of maintenance

advantages. Let’s assume that you’re starting out by running

application monoliths, as opposed to green-field development.

Maintaining these applications takes time, because they are built out of

interlocking dependencies.

For example, imagine that there’s an outage in a monolithic application

– the login manager fails. Every other part of the application hangs on

the login manager, so when it is down, it’s all down. It’s difficult to

support a growing number of customers with an application that

behaves like this, and while there are workarounds, such as failover

services and instancing, they tend to be expensive.

67

The time it takes to test, update, and maintain application monoliths

means that maintenance has become a huge part of the traditional IT

budget. A sample healthcare IT budget from Gartner shows that 70% of

budget expenditures1 come from simply running the business –

increasing to 73% in 2017. This leaves little left over for innovation.

Rule of Thumb – A microservices architecture with fewer application

dependencies and simple APIs, will immediately reduce the time and

money spent on application maintenance. Application maintenance

expense savings has proven to be more than enough to cover the

“getting started” costs within a few years.

The Marriage of Quality and Speed

The dependencies (speed bumps) inherent in any monolithic

application will inhibit innovation. Application monoliths don’t tend to

play well with newer development techniques – such as Agile and

DevOps – that emphasize speed. Any update that’s made to one part of

the application will be reflected in other parts, so any update will need

to be tested thoroughly.

68

There are automated testing tools designed to mitigate this problem, but

like the solutions designed to mitigate failures in monoliths, they’re

expensive and hard to scale.

Microservices, on the other hand, let developers increase the speed of

their development without sacrificing quality. This results in a

competitive advantage – they will be able to refine their application

faster than those who haven’t yet adopted a microservices strategy.

External customers and vendors will build up loyalty to these

applications, while internal end users will become more productive.

QUALITY

Here’s how it works: DevOps, Agile, and other modern development

practices rely heavily on automated testing. The idea is to give

developers or QA personnel the ability to set up several test

environments in just a few clicks, and then let an automated testing

program (e.g. Jenkins) handle most of the effort. Done correctly,

microservices should require zero change to your legacy applications,

thereby limiting the need for the time consuming and costly exercise of

monolithic application testing.

Microservices make for a much cleaner testing process. They’re built

simpler, so it’s easier to review their code. As a result, it’s also simpler

to perform unit tests. By definition, microservices are small and simple

and quick and easy to write, therefore they are equally easy to test.

69

SPEED

The value of speed is different for every organization, but one can

easily appreciate the benefit of a 90% increase in delivered services per

year, or being able to push out 20 new services every five weeks.

Rule of Thumb: Speed of Development + Quality of Development =

Competitive Advantage. For example:

● When an insurance organization leverages microservices to

compete in the large insurance quote comparison engines, you’re

part of a fast-growing digital channel used by millions of shoppers.

● A bank that can offer mobile bill-pay and mobile deposits as a

result of microservices is now able to capture younger generations

of new banking clients who can offer lifelong value and add

millions in deposits.

Walk, Then Run

Find a partner that will work with you on a pressing and compelling

business use case, where a microservice architecture can bring

immediate value. Define the success criteria of a low-risk proof of

concept that will give you the ability to envision “what is possible”,

and the data points to confidently assess the potential and cost/value

benchmarks necessary for you to begin your digital journey.

70

1 Gartner IT Budget: Enterprise Comparison Tool, March 2017

71

Chapter Seven:

Tips for Getting
Started with Microservices

The primary thing to take into consideration is to avoid diving into a

“silver bullet” scenario - there is no one answer or approach for all.

With any microservices strategy, there are countless options and

alternatives. You need first to assess the business problems you are

looking to solve, where you see your market going, how do your clients

want to interact with you, what might be the operational issues, and

what are the support issue impacts, and so on.

Based on this walkthrough, you might realize that your best approach

to Digital Transformation might be evolutionary or revolutionary -

either track will most likely require a combination of in-house

resources/development, open source technology, service providers, and

technology vendors.

It is inadvisable to begin a microservices project – or indeed any

software development project – without first having a detailed plan as

to how it should be accomplished. Microservices, however, might

represent a greater departure from development norms than other forms

of software architecture. This is because developing microservices

doesn’t just mean learning new programing frameworks – it means

72

fundamentally reorganizing the functional units of development within

an organization.

Let’s cover two major microservice focus areas: The first is

foundational – how to lay the groundwork for microservices within an

organization. The second is procedural – the best ways that we have

found for companies to create, build, and implement specific

microservices from the ground up. With these blueprints in hand,

companies will have a much bigger chance to bring their microservices

approach off the drawing board and into reality.

Before You Get Started: Preconditions for Microservices

Research shows that many companies who attempt to replace

entrenched legacy architectures with modern digital infrastructure will

fail – usually after having spent a large amount of money over a long

period of time. Microservices, on the other hand, are supposed to be the

exact opposite – quick, cheap, and successful. To guarantee success,

however, companies need to fulfill several preconditions:

First Precondition: Technological Enablement

One key challenge for organizations is the imperative to take the output

from legacy software infrastructure built in the 1980s and translate it

into an input that the latest model of mobile phone can understand.

Microservices can help facilitate this process, but one key to this puzzle

is knowing that making the legacy backend more available to mobile

73

The idea that all microservices should be
designed with a common set of standards
goes hand-in-hand with the idea that all
microservices should be future-proof.

and browser-based users will increase the workload on an already

sensitive infrastructure.

Another question concerns the future. Microservices – and the

technologies that support them – aren’t static. Creating a microservices

infrastructure means anticipating ongoing trends in information

technology while avoiding mission creep. In other words, developers

should create a microservices architecture that’s upgradable, but one

that also sidesteps the inevitability of a complex middleware stack.

Second Precondition: Standards-Based Approach

The idea that all microservices should be designed with a common set

of standards goes hand-in-hand with the idea that all microservices

should be future-proof. Many third-party developers (which are

commonly employed to create microservices architecture) don’t value

this approach, and as a result, they create frameworks which are blind

to the realities of programming for legacy infrastructure. When no

standards are applied to a microservice, it will be difficult, if not

impossible, to re-use and maintain them in additional applications.

74

Third Precondition: Gearing for Speed

It’s easy for a development team to create a microservice quickly, but

the fact that it’s easy depends mostly on the team, not the microservice

itself. A team that can create microservices quickly needs to be armed

with the right technology and an appropriate set of standards, but that’s

not all.

Conway’s Law says that organizations create software that aids the

structure of their organization. Microservices are discrete and

independently deployable, so an organization that creates microservices

must be comprised of small teams that can work on independent

projects with loose organization from the top down. Therefore, a

microservices architecture complements an Agile or DevOps

framework.

Agile, DevOps and Microservices

Approximately 66% of companies use Agile already as of 2016, but the

usage of Agile is far from comprehensive on an industry-by-industry

basis. Organizations that regularly grapple with legacy hardware and

software will often have difficulty adapting the swift pace of Agile to

the slow reality of developing for legacy systems.

● J.P. Morgan Chase – the world’s 10th largest bank – only began

Agile adoption as of 2015.

● Many healthcare organizations still consider Agile as an

equivalent to Waterfall.

75

● Large government organizations still wrestle with the concept

of adopting Agile methods to legacy hardware.

Many of the organizations that use Agile in theory may not actually be

using Agile in actual practice. Agile is best defined simply as an

organization’s ability to achieve a high rate of change. If an

organization still deploys releases only once every four months, then

they’re not actually Agile.

Adding microservices can help organizations achieve Agile in full.

Microservices are designed to be small and flexible, so when Agile

teams start working on microservices projects, their overall velocity

increases. This can be enough to take a development organization from

a monthly release cadence to a weekly release cadence – in other

words, to transform an organization into one that achieves Agile in

practice, as opposed to in name only.

Microservices/API software vendors that enable an organization to

achieve scale and velocity with legacy-based applications can be

considered a DevOps enabler. For example, OpenLegacy:

1) Automatically generate APIs/microservices from legacy

applications in a fraction of the time, and with open standards

2) Generate standard Java objects that can be deployed as digital

services for mobile, the Web, or in the cloud

3) Compatible with all standard DevOps tools and are easily

incorporated into the DevOps ecosystem

76

4) Accommodate test-driven design by generating automated test

units

5) Enable deployment by generating code that can be deployed

like any other – nothing proprietary

6) Management console can be used to control both APIs and

microservices, scale up or down, which aligns well with

DevOps processes

Actualizing Microservices Once Preconditions are Met

Once an organization has the technological and structural prerequisites

that can support a much faster development cycle, it’s time to begin to

create microservices in earnest. This is a three-phase process –

discovering a need for a microservice, creating the microservice, and

putting it into production. For example, at OpenLegacy, this can be

summarized as Discover, Build, and Realize (Figure 1).

Figure 1. Once preconditions are met, one approach to getting started

involves the Discover, Build and Realize approach.

Stage One: Discover

77

“Discover,” in this case means documentation. Work doesn’t begin

until developers can articulate the detailed logic that underpins their

microservice in a text document, describing what it’s for, how it works,

and whether there are any loopholes.

As one example, imagine a microservice that queries hospital records

when patients and doctors want to look up their test results. The

discovery document might include:

● Users: In this case, patients who wish to look up their own

records, and doctors who wish to do the same.

● Description: This application lets users look up their hospital

records. To do so, it must tie together a number of systems,

such as a web portal, a record library, and/or a mainframe.

● Sequence: User authenticates via the web portal, navigates to

the records page, and selects a record, which triggers the

microservices and provides a response back to the customer.

● Precondition: User must authenticate as a patient or a doctor,

must be authorized to view records, and must have records to

view.

● Postcondition: The application serves a medical record, which

is downloaded as a PDF. If the microservice is unable to do so,

it supplies error codes for the edification of the user.

The discovery document is the lynchpin of the microservice itself.

Many errors, inconsistencies, and shortcomings of applications can be

traced to their origins on paper, independent of their code. The bullet

points above represent the briefest sketch of an actual discovery

78

document – the real version should be thoroughly checked for

loopholes.

Stage Two: Build

The “Build” phase of microservices development encompasses both

writing and testing code. By their nature, microservices are mean to be

created quickly and tested quickly, often using automated testing tools.

Testing a microservice will generally be more complicated than writing

it. Once the microservice is written, at least three phases of testing are

required:

1. Development and Build-Time Testing

Development testing is performed by a developer during and

immediately after the microservice is written. For

microservices, these typically take the form of unit tests. Build

time tests, on the other hand, will take the form of static

analysis, with different test tools aimed at different parts of the

microservice.

2. QA Testing

QA testing for microservices involves positive/negative testing

several areas. For example, there’s functionality – does the

application work as intended? There’s also security and

authorization – who can use the microservice, and how does it

react to unauthorized users? Lastly, testing is performed on the

business logic of the application to gauge application

performance under a number of use-case scenarios.

79

3. PTE Testing

Public Test Environment (PTE) Testing simulates the

performance of a microservice in a production environment.

Essential questions include how the application performs under

normal traffic, whether it can perform well under unusual traffic

loads, and how its performance translates into an SLA.

Stage 3: Realize

Once discovery and building have been completed, all that’s left to do

is put the microservice into production. This is very easy to do –

possibly the easiest step in the discover-build-realize loop.

Microservices are designed to be easy to deploy by their very nature.

Because microservices are mini-applications, they can be designed and

put into production without extensive collaboration between teams.

Putting a new microservice into production doesn’t run the risk of

breaking another part of the application.

Therefore, the realization of a microservice is about more than just

production. Rather, it asks developers to reflect on the lessons learned

from building and testing an application. Incorporating these lessons is

an aspect of continuous improvement. Creating your first microservice

may have been an unexpectedly easy process. Incorporating the lessons

from building it means that your second microservice will be even

faster and easier still.

80

Microservices are designed to be easy to
deploy by their very nature.

Put It All Together: Start Small & Think Big

For microservices evangelists within large organizations, the challenge

isn’t laying the groundwork, committing to institutional change, or

programming new services. Rather, the challenge is getting buy-in

from principals in order to get those changes started. From the

perspective of a single individual, this task can seem daunting, but

there are a number of concrete steps that even just one person can take

to move the needle.

Without proof – proof that the microservices concept is workable –

there’s no way that decision makers will commit to large-scale

institutional change. Therefore, the evangelist’s job is to create proof,

ideally by committing to a successful small-scale microservices project.

Fortunately, in a large organization with a lot of legacy infrastructure,

there’s ample opportunity for one person or a small team of people to

pilot a workable microservice.

Imagine a specific function – something small, convenient, and

preferably not mission-critical – that could be improved if it were

augmented with a microservice. Take that function through the design,

build, and realize process above. This will represent the test case for a

81

microservices approach. If it works, that achievement will serve as a

toehold: you can scale from there.

In most organizations, creating the culture that can support

microservices – and then microservices themselves – is iterative. The

best approach is to start with a small success and grow from there.

Although the starting point is small, and the journey is long, the result

will be a more streamlined and focused business unit that can finally

meet the demands of an increasingly digitized economy.

One Last Thing: Choosing a Microservices Vendor

A monolith to microservices strategy is going to involve technology

impacts, process impacts and corporate culture impacts - it is easy to

state that one is Agile and flexible versus actually being Agile and

flexible. So pick a vendor who will be a partner, one that has a proven

track record of understanding where you are, what you have and where

you want to go.

Vendor Technology

Not every microservices product is created equal, and some don’t even

fulfill the strict requirements of being a microservice. This is what

Gartner calls “microservices washing” – the act of selling a product

with superficial microservices labeling that doesn’t conform to the

definition of a microservice.

82

Up until fairly recently, SOAs and ESBs were the primary integration

strategies for customer-facing applications. As this architecture lost

some momentum, many vendors felt the need to pivot to a new

architecture such as microservices.

In theory, this pivot is supposed to look like an idealized microservices

strategy – a layer of microservices that exposes features to customers

and partners, a layer that connects these features to business units, and

a third layer that connects business units to legacy applications (Figure

1).

In practice, however, these companies never quite figured out how to

get rid of the SOA architecture underlying their products. The result is

usually something that looks like an ESB encapsulated by a

microservices wrapper.

For example, imagine a microservice that exposes customer

information as an API. The API needs to transmit all customer data, but

only to some agents, due to compliance rules. This microservice

contains an ESB. When it receives a request for customer data, the ESB

contacts the mainframe, but not directly. First it needs to contact

another microservice that will check whether or not the requesting

agent is authorized to receive that data.

This violates good architectural design principles for microservices. It

produces a multi-layer of dependency due to its integration, essentially

83

creating a monolith. If one part breaks, the entire service goes down

(Figure 2).

APIs need to connect to legacy mainframes in ways that are simple,

intelligent, and modern. For example, OpenLegacy makes this possible

by creating prebuilt connectors that interface with legacy applications

in order to create a Java Object, with output that’s readable by a

standard REST API, a browser-based web-page, or even an SOA web

service (Figure 3).

The result is a tool that any developer can use without needing to learn

or modify the legacy source code (e.g. COBOL). Instead of worrying

about lengthy integration periods or legacy code, developers can create

APIs and implement robust new features in just hours – more than fast

enough to meet the increasing pace of customer demand.

Figure 1. According to Gartner, organizations who over-state how

their microservices work are engaged in so-called “microservices

washing.” The diagram above often represents how they say it works.

84

Figure 2. In a “microservices washing” scenario, the actual

microservices architecture is far more complicated than described.

This diagram is often how it really works.

85

Figure 3. For example, OpenLegacy’s “modern microservices” remove

layers and complexity to accelerate innovation with legacy monoliths.

This is how it actually works.

Vendor Checklist & Considerations

Partner or a
Vendor

A partner should understand more than one
aspect of your business challenges. A partner
cares about what you care about. You will
have issues, but a measure of a partner is how
you resolve and walk through those issues
together.
A partner is transparent with their clients and
quick to respond to questions. A partner will
own their mistake if they make a mistake.

Subscription
Model

It is all about flexibility, minimizing upfront
risk and minimal capital investment. In a
subscription model, subscribers are always up
to date or can access the latest versions, are in
line with the steady adoption towards cloud
computing and software as a service, and can
be time-boxed to accommodate current
project timeframes and usage needs.

Support Model Look for a defined support process and
methodology. Understand the standard and
premium terms around Response Time,
Mitigation Time, and Resolution Time. Look
into the enhancement request process,
developer’s community, knowledge center,
user groups and primary point of contact
philosophy.

Onboarding How do you adopt this new technology, what
is the training curriculum and can it be

86

customized to your specific needs? What is
available from a self-learning process, access
and content within the Knowledge
Center? Does your partner provide Quick
Starts and On the Job Mentoring Services?

Open
Standards

Why Open Standards? One could also ask
why should you re-invent the wheel. Open
Standards enable broader adoption with the
community along with reducing the biggest
barrier to adoption which is cost. Open
Standards eliminate unnecessary barriers,
implementation assumptions are reduced, and
open standards increase adoption and
cooperation amongst teams. Open Standards
invites cooperation and thinking outside the
box -- all pushing toward innovation.

Underlying
Architecture

Does your partner practice what they preach --
are they using industry standard tools within
their architecture? Are they flexible and
adaptable to new or other technologies? Do
they provide you with access to the people
that can explain their underlying architecture
and why they selected certain standards? Most
importantly do they provide you with a clear
and definitive Platform Roadmap?

Core Focus Identify a partner who understands your
business/technical problem. It might not be all
your problems, but be sure they at least
understand a specific business pain point, and
are capable of solving that pain and do it very
well. The ideal partner won’t pretend to do
more than what they can actually do, but are
honest and eager to do the thing they do very
well.

87

1Gartner Blog Network, What A Microservice is Not, January, 2017

88

Chapter Eight:

The Business Impact
of Microservices & APIs

The benefits of microservices and APIs extend far beyond the IT

department, and it’s important to keep the business side of the

organization more involved in the conversation.

The bottom line is that if you need to innovate faster yet your IT teams

say that a project is “complex, expensive and time-consuming” because

of your organization’s “legacy systems,” then microservices may be the

answer.

The irony of legacy systems is that they tend to impact some of the

oldest, most successful companies in the world. Legacy monoliths, like

IBM, UNISYS, HP, Digital, Siemens, Honeywell, Tandem, Stratus and

others began positively impacting business operations in the 1950’s.

Data storage and access methods, like VSAM, IDMS, IMS, DB2,

Oracle, and ADABAS proved to be revolutionary in the ability to store

and facilitate rapid access to data through mission and business-critical

applications written in COBOL, Assembler, Fortran, ADS, RPG, and

Natural.

Therefore, it is often the most established companies - the big brand

names - that have the greatest difficulties remaining on the “cutting

89

When you have legacy systems and must
cater to customers and prospects that are
heavily reliant on digital services
delivered via mobile or Web, you need to
find a way to close that gap between old
technology and modern demands.

edge” within their industries unless they have found ways to accelerate

innovation with their legacy monoliths. Some organizations have

become so accustomed to the status quo, that they do not even think it

is possible to reduce the backlog and speed delivery of innovative

digital channels and applications.

When you have legacy systems and must cater to customers and

prospects that are heavily reliant on digital services delivered via

mobile or Web, you need to find a way to close that gap between old

technology and modern demands.

We don’t intend to sound too promotional, but we can speak most

confidently about the business use-cases we have personally been

involved in over the years in our roles at OpenLegacy.

One of the most amazing aspects of our work is that even the largest

organizations in the world haven’t been able to solve their legacy

90

system challenges using in-house development, middleware

technology, or SOA/ESB initiatives. All of these investments, while

excellent choices at the time, are often not able to keep up with the

demands of the new “digital economy” -- even after throwing hundreds

of people, millions of dollars and years into the effort.

The business side of the organization may not care one bit about how

the technology works: they just want to be competitive, nimble and

build new or enhanced revenue channels. The IT side of the

organization cares about reducing the complexity of accessing and

leveraging their systems. Somewhere in the intersection of these two

goals is where “modern microservices” become part of the

conversation.

Very often, our approach to microservices reduces microservice

creation from weeks to minutes or hours, and project deployment from

months to weeks.

Although microservices can benefit any business with legacy systems,

two industries that have an abundance of legacy technology and digital-

demanding consumers are insurance and banking. So, let’s start there.

Optimizing Agent Portal Efficiency

A major publicly traded insurance company developed an “agent

portal” which exposed business processes for its workers. The

organization wished to add more services to the portal, but the portal

91

was based on an IBM i application. This meant that adding more

services took months at a time— and in the meantime, the company’s

competitors were gaining.3

They were able to use an API connector which automatically scans and

parses green screens in order to take the output from their IBM i

application and place it into the context of their portal. No COBOL

modification or re-write was required, and the first new service was in

place within hours. As a result, their agents were able to rapidly

understand the new interface and perform job responsibilities more

productively.

Online Insurance Quote Comparison Services

Insurance aggregators have become a critical way for companies to get

their price quotes in front of consumers. According to Price

Waterhouse Cooper (PWC), 71% of insurance customers use digital

research before buying a policy, and 68% of insurance customers were

willing to download and use an application from their insurance

provider. Unfortunately, one company found that their AS/400-

powered application was unable to serve quotes to aggregation

services. Even after six months of development, it still took up to three

seconds to deliver quotes – long enough that most aggregator services

still refused to accept their input.4

This insurance company was able to use an API that defined web

services on top of AS/400 transactions. This let them extend the reach

92

of their legacy systems into the cloud. They were rapidly able to serve

quotes to browser-based applications in just 300 milliseconds and are

now included in all major insurance aggregators.

Improving Internal Staff Efficiencies

Before: Although an insurance company was able to modernize most of

their offerings, their auto insurance offering was left as a legacy

application. As a result, agents were forced to switch between a web

browser and an antiquated “green screen,” which impacted productivity

and responsiveness.

After: This insurance company was able to expose a service from their

AS/400 claim management system that presented all the reports related

to a specific claim within the main auto insurance web applications.

The initial proof-of-concept was completed in just five days. In

production mode, insurance agents were able to realize time-savings of

up to 30%.

93

“OpenLegacy let us connect our IBM i and
AS/400 applications to our insurance agent
portal without changing our COBOL
applications, which would have been a
huge, expensive headache. We couldn’t
believe OpenLegacy was able to conform to
all of our security, performance, and design
constraints - and do so within days.”

“OpenLegacy let us connect our IBM i and AS/400 applications to our

insurance agent portal without changing our COBOL applications,

which would have been a huge, expensive headache. We couldn’t

believe OpenLegacy was able to conform to all of our security,

performance, and design constraints - and do so within days.”

Insurance Services IT Director

Accelerating Bank Innovation By 50%

Before: Despite wanting to be an innovative, “FinTech-ready” bank, A

major bank in Latin America was stifled by post-merger legacy systems

spread across two countries and some of the highest operating costs of

any bank in the region. Mainframe programming using COBOL was

done in Columbia, Java programming was done Panama, and the

infrastructure was maintained by a third-party global systems

94

integrator. Excessive complexity delayed time-to-market for new

mainframe-based products and services, often requiring six months or

more for deployment. Among their top priorities was a Payment

Processing service for their commercial clients.

After: The bank’s “digital journey” is based on OpenLegacy’s

microservice-enabled API integration and management software. The

first project included training, creation, and deployment of 12 new

APIs in just 8-9 weeks by only four Java developers. Total time for

deployment of their new Payment Processing service was 90 days, 50%

faster than typical mainframe projects. The bank considered these

timeframes exceptional considering they also switched from IBM

BlueMix to Amazon Lambda mid-way through then project.

Furthermore, the service runs about 20-30% faster than those

previously built without microservices, and a DevOps stress-test

concluded that, together, OpenLegacy and Lambda far exceeded their

goals by handling 60,000 concurrent requests.

Bank Creates Six Global APIs in Two Weeks

Before: A top ten global bank’s demand for digital, global services led

to a backlog of 100+ foundational APIs necessary to build new

applications and customer experiences.

95

Nearly 200 developers have been working on the project for over a

year, using a popular product for API gateway and orchestration. The

product did not specialize in legacy (core) applications running on

AS/400 and mainframe platforms, and despite its popularity, came

short of addressing the bank’s needs.

Specifically, the product could not generate APIs exposing RPG

programs, but could only manage and expose existing APIs. Hence, the

bank’s developers had to write additional AS/400 code in RPG in order

to expose functionality. In other cases, they had to change existing

code, an invasive practice for applications that have been in place, tried

and tested, for many years. Beyond just coding new features, there was

substantial time invested in testing and regional certification and

customization which slowed things down even further. Ironically, a

tool that was supposed to shorten development time and reduce efforts

ended up creating additional manual effort.

Another critical requirement for the success of the API project was

creating a Global API: A unified API with the same end-user

experience no matter the country, region, or underlying technical

environment. From a business standpoint, this would require the

extraction of common logic and functionality that can serve as a single

launch point for new products and services that can be built and

consistently rolled out in a unified, global manner.

96

After: OpenLegacy’s API integration consultants worked out an

alternative architecture, showing it was possible to eliminate all the

intermediate layers and the AS/400 channel logic. Instead, the bank

could directly expose the AS/400 transactions and move it to a Java

application where the bank develops new applications and new logic.

Now the bank can run and orchestrate transactions outside their legacy

environment. This was made possible thanks to OpenLegacy’s

simplified product architecture with a minimal number of layers, and

direct (straight-line) connectivity to the CBS transaction.

As a result, six key global APIs were created in just two weeks, and the

new approach enabled the bank to accelerate “omnichannel”

innovations for mobile Web or cloud to serve customers wherever, and

whenever they choose. Furthermore, the simplicity and automation

enabled the APIs to impressive 7X performance improvements.

“Within two days, OpenLegacy created APIs for standard CBS

transactions, including payments and other financial products,

compared to the previous 5-7 weeks using the prior API orchestration

product and existing IT architecture.” Executive, Top Ten Bank

97

“Within two days, OpenLegacy created
APIs for standard CBS transactions,
including payments and other financial
products, compared to the previous 5-7
weeks using the prior API orchestration
product and existing IT architecture.”

These are a few examples of just a few industries, and there are many

more (www.openlegacy.com/case-studies). As established

organizations all over the world face the growing digital economy and

the growing influence of the millennials and their digital impatience,

there has never been a better time to consider microservices and APIs.

Regardless of the vendor and approach you choose, may your digital

journey lead you to IT efficiency, faster cycles, greater scalability and

competitive differentiation.

98

About OpenLegacy

OpenLegacy helps organizations accelerate their speed of innovation

with legacy systems by quickly launching digital services for the web,

mobile and cloud in days or weeks versus months. Our microservice-

enabled API software accelerates innovation with legacy systems. We

automate API creation, deployment, testing and management from core

applications, mainframes and databases. We simplify projects by

avoiding complex architectures, and we improve both staff efficiency

and digital service performance. Together, business and IT teams can

quickly, easily and securely meet consumer, partner or employee

demands for digital services without modernizing or replacing core

systems, and without special programming skills or invasive changes to

existing systems and architectures. Learn more at OpenLegacy at

www.openlegacy.com

