
Craig Beattie and Patty Hines, CTP

Legacy Modernization
in the World of APIs,
DevOps and Microservices
Discover the pros and cons of 'modern' approaches to
legacy migration to enable innovation and speed

“Your legacy IT infrastructure likely isn't going anywhere soon and may not
actually be the problem. You need to bridge your legacy back-ends with

DevOps to meet business requirements, and microservices is a way to do it."

Zeev Avidan, CPO, OpenLegacy

www.openlegacy.com

www.openlegacy.com

LEGACY MODERNIZATION
IN THE WORLD OF APIs,
DEVOPS AND
MICROSERVICES

Craig Beattie and Patricia Hines, CTP
07 December 2018

This report was commissioned by OpenLegacy,
which asked Celent to design and execute a Celent
study on its behalf. The analysis and conclusions
are Celent’s alone, and OpenLegacy had no
editorial control over report contents. Reprint rights
granted to OpenLegacy.

CONTENTS

Executive Summary .. 1

Key Research Questions ... 1

The Digital Shift and Innovation .. 2

The Move from Physical to Virtual Institutions .. 2

Going OmniChannel and Early APIs ... 2

API-First ... 4

Enabling Innovation ... 5

Modular Financial Services ... 6

Transforming Legacy Systems.. 8

The Legacy Challenge ... 8

The Legacy Trade Off .. 13

A New Legacy Modernisation ... 15

A Pragmatic Path to Digital.. 16

Mitigating legacy .. 17

Legacy Systems as Participants in a Microservices Architecture 18

The Path Forward ... 20

Leveraging Celent’s Expertise .. 21

Support for Financial Institutions ... 21

Support for Vendors .. 21

Related Celent Research .. 22

EXECUTIVE SUMMARY

KEY RESEARCH QUESTIONS

1
What does a
modern architecture
look like, and how
does it enable
innovation?

2
What is a legacy
system in this
modern
architecture?

3
Is building a new
digital company
from scratch the
only way to be a
truly modern
financial institution?

Much of the focus on digital transformation in financial services is on customer-facing,
external channels, when in fact, substantive transformation opportunities lie across
front, middle, and back offices. To serve fast-moving customers with changing
expectations, financial institutions must achieve a new level of agility and automation.

The combination of microservices, APIs, and DevOps allow financial services firms to
transform their legacy architecture, isolating the limitations of these critical systems.
APIs also create a bridge between traditional batch-based, on-premises integration
approaches and real-time digital integration with the cloud, mobile, and social
applications underpinning omnichannel delivery.

Over the past 10 to 20 years, while systems integration technologies that harness
service-oriented architecture (SOA) and web services have improved greatly, core
business operation applications and business operation processes have remained
largely unchanged. Monolithic legacy systems continue to hamper financial
institutions’ efforts to include value-added services for customers, posing challenges
in terms of agility and innovation.

Leading banking and insurance organizations are using a combination of
microservices, DevOps, and APIs to move to a modern, digital architecture using
more flexible and agile development and deployment methods.

C
h
a
p
te

r:
 T

h
e

 D
ig

it
a
l
S

h
if
t

a
n
d
 I
n

n
o
v
a
ti
o
n

2

THE DIGITAL SHIFT AND INNOVATION

Radical changes in technology, coupled with rapid consumer adoption, and rising
staff expectations around usability have brought significant shifts in how financial
services are delivered and implemented.

THE MOVE FROM PHYSICAL TO VIRTUAL INSTITUTIONS
Most associate the start of digital with the rise of the Web. However, the rise of the
Web followed the earlier shift from bricks and mortar to the telephone, where
expensive branches and high street presence gave way to financial services
delivered through call centres at lower operational costs. Many significant brands
grew in the 1980s out of this shift and form the large incumbents still operating today.

The rise of the Web and the move online shifted the world to a 24/7 model, where
self-service and e-commerce became king. Many legacy systems and legacy
business models were nearer to 12/6 than 24/7, and this shift led to a rise in new
entrants touting 24/7 support. Even the new batch of contact centre institutions had to
scramble to accommodate these new requirements.

In response, many incumbent financial institutions built adjacent architectures next to
their existing systems — systems that supported the existing products and sales
approach but weren’t 24/7.

Figure 1: The Rise of the Channel Silos

Source: Celent analysis

GOING OMNICHANNEL AND EARLY APIS
After the rise of the Web and now smartphones the idea of a web-only or phone-only
institution was reserved for the niche play. Larger financial institutions and those that
prided themselves on customer service found that they needed to support incoming
requests in one channel — say the Web, but then successfully complete them in a
branch or on the phone. The concept of adding a new stack of technology for each
new channel was not only cost-prohibitive but also wouldn’t satisfy customer needs.

A maturing occurred, and SOA was seen as a means to expose services from the
existing systems that the various channels could then consume. The goal here was to
successfully support multiple channels and have consistency across those channels.

Traditional

Channel Systems

Contact Centre

Channel Systems

Web Channel

Systems

C
h
a
p
te

r:
 T

h
e

 D
ig

it
a
l
S

h
if
t

a
n
d
 I
n

n
o
v
a
ti
o
n

3

The early SOA APIs were a means to an end often generated directly from the
source, systems as shown in Figure 2.

Figure 2: The Use of an SOA Layer

Source: Celent

In Figure 2, we see that in this pattern SOA services are built in front of the systems
of record to enable the systems of engagement. In this case the integration layer
uses just enough of what is available to enable as much as possible in the channels.

Financial Institutions Are Enabling Ever More Complex Channels
With the rise in the types and complexity of new channels, APIs are critical to cost-
effective adoption. Below are two examples from Mizuho Bank in Japan.

Figure 3: Illustration of Pepper Use Cases

Source: Celent, Mizuho Bank: AI and Social Media Banking, April 2017

Traditional Channel

Systems

Contact Centre

Channel Systems

Web Channel

Systems

Systems of

Engagement

Mobile Channel

Systems

SOA Integration

Layer

Systems of

Integration

Systems of

Record
Product System 1 Product System 2 Product System 3 Product System N

SOA Integration

Layer

SOA Integration

Layer

SOA Integration

Layer

C
h
a
p
te

r:
 T

h
e

 D
ig

it
a
l
S

h
if
t

a
n
d
 I
n

n
o
v
a
ti
o
n

4

While Mizuho Bank’s use of emojis is unusual, the rise of AI-powered chatbots
throughout the retail industry and in financial services has been extraordinary.

Figure 4: Sample Chatbot

Source: Celent, Mizuho Bank: AI and Social Media Banking, April 2017

API-FIRST
The current shift observes that the quality of the API layer is the primary driver of
value. Far from being a byproduct of creating a modern financial institution, the API is
the asset that allows for innovation and for participation in a wider ecosystem, and
reduces both cost and delivery timescales. With an API-first design philosophy the
API itself is given focus, and is the asset that is shared beyond the enterprise.

Figure 5: Logical Architecture Showing API Layer

Source: Celent analysis

In Figure 5, the API is expressed as a single layer. In some enterprises, the public
API is offered as a single layer through a single API Gateway. In a microservices
architecture this API may be implemented as many discrete applications, perhaps
operating as a microservices mesh without the need for a centralised implementation.

Regardless of how it is implemented or realised, a well-designed API allows both
internal systems and third party organisations to leverage services from within the
financial institution. Further, the financial institution can offer products from partners
and weave the offering into their own channels. The opportunities this allows are
discussed further in the next section.

Traditional

Channel

Systems

Contact

Centre

Channel

Systems

Web

Channel

Systems

Systems of

Engagement

Mobile

Channel

Systems

API

Systems of

Record

Product

System 1

Product

System 2

Product

System 3

Product

System N

3rd Party

Channel

System 1

3rd Party

Product

System 1

3rd Party

Channel

System N

3rd Party

Product

System N

C
h
a
p
te

r:
 T

h
e

 D
ig

it
a
l
S

h
if
t

a
n
d
 I

n
n
o
v
a
ti
o
n

5

A sample concrete implementation of the architecture is offered in Figure 6, where we
see Intesa San Paolo weaving partners into their architecture at the front end and
third parties offering transactional services at the back end.

Figure 6: Solution Overview at Intesa San Paolo (Pre-Microservices)

Source: Celent, 2018 Model Bank Winner for Modernising IT Architecture: Intesa San paolo, April 2018

ENABLING INNOVATION
While some believe that fintechs will eventually make banks obsolete, the current
reality is that banks and fintech companies are entering collaborative partnerships for
innovation, giving banks access to innovative products, new technologies, and startup
culture, and giving fintech companies access to funding, regulatory expertise, and
customer reach. We continue to see press announcements of banks enabling

Internal

Channel

Systems

Internal

Product

Systems

3rd Party

Channel

Systems

3rd Party

Product

Systems

API

(as a

perimeter)

C
h
a
p
te

r:
 T

h
e

 D
ig

it
a
l
S

h
if
t

a
n
d
 I
n

n
o
v
a
ti
o
n

6

fintechs, and fintechs enabling banks, as shown in Figure 7. This trend is also
prevalent in the insurance industry and their relationships with insurtech firms.

Figure 7: API Partnerships Between Banks and Fintech Firms Provide Business Value to Both

Source: Company announcements and websites

Many of these API partnerships depend on customer data and services embedded in
legacy technology. By working together and taking advantage of APIs, banks and
fintech firms, insurers and insurtech firms leverage their distinct strengths, enhancing
the customer experience much more than each entity could do on its own.

Figure 8: Benefits of Implementing APIs for Banks (%), 2017

Source: Capgemini Financial Services Analysis, 2017; 2017 Retail Banking Executive Interview Survey;
Capgemini Global Financial Services

MODULAR FINANCIAL SERVICES
In harnessing microservices, DevOps, and Open APIs, financial institutions need to
undertake a paradigm shift to transform themselves into digital financial services
companies. Microservices, DevOps, and Open APIs are not ends in and of
themselves but rather a means to modularization. In harnessing these technologies
and development approach, financial institutions can undertake a paradigm shift to

C
h
a
p
te

r:
 T

h
e

 D
ig

it
a
l
S

h
if
t

a
n
d
 I
n

n
o
v
a
ti
o
n

7

transform themselves into providers of modular financial services, rather than
monolithic, integrated financial services.

Figure 9: The Future of Financial Services: Modular Financial Services

Source: Microservices: A Software Engineering Revolution Beyond the Clouds, Celent

Key
Research
Question

1

What does a modern architecture look like, and how does it
enable innovation?

Increasingly a modern or digital architecture
features APIs and microservices, and leverages

significant automation as seen in DevOps.

C
h
a
p
te

r:
 T

ra
n
s
fo

rm
in

g
 L

e
g

a
c
y
 S

y
s
te

m
s

8

TRANSFORMING LEGACY SYSTEMS

THE LEGACY CHALLENGE
Historically, when people in financial services talked about legacy, images of
mainframes running 40-year-old applications came to mind — in fact many of the old
guard in the IT departments of financial services firms still remember punch cards as
a means of entering programs into computers.

Figure 10 discusses the ingredients in this new recipe for IT and the relative benefits
compared to a classic IT approach.

Figure 10: Benefits of the New Recipe

Source: Celent Report: The New Recipe That Is Changing Insurance, February 2018

In this context, legacy systems are perceived to disable financial institutions in terms
of agility, speed to market, and flexibility in how they distribute their products because
the new definition of digital technology is simply much faster.

In short, legacy systems didn’t get slower. Instead, the bar has been raised in terms
of speed of change, quality, and cost.

C
h
a
p
te

r:
 T

ra
n
s
fo

rm
in

g
 L

e
g

a
c
y
 S

y
s
te

m
s

9

The challenges facing Intesa San Paolo and the opportunities are neatly expressed in
Figure 11.

Figure 11: Summary of Intesa San Paolo's Challenges and Objectives

Source: Celent, 2018 Model Bank Winner for Modernising IT Architecture: Intesa Sanpaolo, April 2018

In the Celent report, 2018 Model Bank Winner for Core Banking Transformation:
Zions Bank, April 2018, Zions Bank expressed the challenge thus:

• Costs: Maintaining legacy systems carries a higher cost than running modern
core banking systems due to the number of workarounds. Integration work is
expensive, because there are many more risks of opening up a system that is
built to be left alone.

• Flexibility: Large mainframe-based legacy platforms were built for stability and
speed and to process millions of transactions in a batch at the end of the day.
They weren’t made to be altered. New and changing banking functionality
requires ongoing development. It’s very difficult, and will only become more
difficult, to develop modern, flexible customer experience on top of legacy cores.

• Developer talent: Many of the developers who originally worked on some of
these core platforms are at the end of their careers (or lives). New IT pros are
attracted to more modern architecture written in languages like Java or C#.
Younger developers often have a hard time making sense of the vast
interconnectedness of banking systems, many of which are poorly documented.
This hampers their ability to deliver projects and injects substantial risk because
pulling on one string can unravel another. Switching to a modern core (with real-
time accounting and componentized architecture) is seen as job enrichment to
the IT talent coming onstream today.

• Ability to serve a digital customer: Tech companies are leading the way with
what’s possible in digital. Customers expect a modern digital experience, and
legacy core systems have been challenged to deliver it. Core systems that lack
capabilities around real-time, cloud readiness, componentization, and openness
today find it more difficult and expensive to keep pace with the competition; and
the task will only become more challenging.

C
h
a
p
te

r:
 T

ra
n
s
fo

rm
in

g
 L

e
g

a
c
y
 S

y
s
te

m
s

10

The results in the six months after National Australia Bank’s modernisation are a
great example of the increase in agility and speed to market that can be achieved.

Figure 12: National Australia Bank’s Results

METRIC VALUE CHANGE

NEW ACCOUNTS PER MONTH 20,000 N/A

TIME TO FUNDING: CREDIT CARD 2.6 days 50%

TIME TO FUNDING: PERSONAL LOAN 2.4 days 59%

INCREASE IN APPROVAL CONVERSION RATE N/A 20%

Source: Celent, National Australia Bank: Personal Banking Origination Platform, April 2017

Waterfall Vs. Agile Vs. DevOps
Historically IT change projects and programs were frequently delivered in a waterfall
style reminiscent of large engineering deliveries. Focus was on defining up-front the
requirements and then designing for the entire deliverable. This would then be built
and go through progressively more intense testing phases to prove what was built
was what was requested.

Agile methods and now DevOps seek to reduce the time between request, test, and
delivery, to deliver in multiple, shorter deliveries and to automate as much of this
process as possible. Figure 13 shows how continuous integration helps automate
build and integration testing activities, and then how continuous delivery and then
deployment increase the amount of automation.

Figure 13: Evolution of Automation in Development

Source: Celent Report, Building Your DevOps Chops: A New IT Approach Aimed at Faster/Better/Cheaper,
October 2016

On-Premise Monoliths Vs. Microservices in the Cloud
The Ops side of DevOps provides even greater possibilities for increased speed of IT
change. Historically in deploying a solution one would have to order the machines,
set up the operating system on them, patch them, and harden them for security, and
that was before putting the application on and doing business.

When commissioning infrastructure is so costly, one makes sure it is highly utilised.
Further one doesn’t commission infrastructure needlessly. Thus, even web-scale
architectures ran on a limited number of machines.

Operate

Requirements Development Build
Integration

Testing

Other Env.

UAT, Scale

Testing, etc.

Production

Continuous IntegrationRequirements Development

Other Env.

UAT, Scale

Testing, etc.

Production

Continuous DeliveryRequirements Development Production

Continuous DeploymentRequirements Development

C
h
a
p
te

r:
 T

ra
n
s
fo

rm
in

g
 L

e
g

a
c
y
 S

y
s
te

m
s

11

Today, a machine can be requested from the cloud, automatically configured, and
even linked to other machines in the network in minutes, rather than months as
shown in Figure 14.

Figure 14: Provisioning and Configuring Machines Now Takes Minutes

Source: Celent Report, Building Your DevOps Chops: A New IT Approach Aimed at Faster/Better/Cheaper,
October 2016

DevOps and Agile are not new to the IT industry, but parts of the financial services
industry have been slow to pick them up. To give some real context to the benefits
one might expect from these approaches, here is what the early adopter Hiscox
reported in Celent Model Insurer 2015: Case Studies of Effective Technology Use in
Insurance:

• Delivering the project on time and under budget, which is a first for Hiscox with
projects of this scale.

• The platform has enabled Hiscox to move from its typical 10-week waterfall
delivery model to an iterative, two-week cycle.

• Minimising the number of defects in the first few weeks (post go-live). The
number was well below Hiscox’s expectations.

• Delivering fixes and product configuration changes into production faster. Thanks
to the tools introduced through DevOps, a release takes six minutes (on average)
vs. three hours with the previous technology stack. In the week prior to go-live,
Hiscox performed 47 releases, which would have been impossible with the
traditional deployment tools.

• Since launch, Hiscox has deployed 26 times per week (on average) across the
nine environments. The average cost savings of each automated deploy has
equated to approximately £7k a week. This equates to a savings of approximately
£370k annually.

• Additional benefits of consistency, time saved investigating manual errors, and
time saved training new staff has resulted in cost avoidance. At its peak, the team
performed 19 deployments in one day!

In a world where an application can be deployed to its own infrastructure in minutes,
software architects are allowed to reconsider the size of a component and how it can
be deployed independently of the rest of the infrastructure. Further, the servers
become disposable — if a server starts to misbehave, then destroy it and start a new
one. There’s no need to “rescue” a server that may have been hacked or has a bug.

Operating

System

Order the Web

Servers
Patches

Security
Hardening

Web

Server

Software

Configura

tion

Operating

System

Order the

Application

Servers

Patches
Security

Hardening

Applicatio

n Server

Software

Deploy

Code

Set up

Network

Harden

Network

Operating

System

Order the

Database

Servers

Patches
Security

Hardening
Database

Database

Definition

& Data

Provision a Web Server from the Cloud

Provision a Application Server from the Cloud

Provision a Database Server from the Cloud

Configure the Machine

Configure the Machine

Configure the Machine

Configure the Network
Specific

Settings

Specific

Settings

Specific

Settings

Operate

Order a Machine
Operating

System
Patches

Security

Hardening

Supporting

Applications &

Platform

Deploy Code or

Software

Provision a Machine from the Cloud Configure the Machine
Deploy Code or

Software

… and for n-tier architectures …

C
h
a
p
te

r:
 T

ra
n
s
fo

rm
in

g
 L

e
g

a
c
y
 S

y
s
te

m
s

12

In this environment, an API is delivered by many independent applications, running
on their own servers, being automatically tested, automatically maintained, and
automatically scaled as necessary.

Figure 15: Evolution of Software as Automation Increases

Source: Celent Report, Building Your DevOps Chops: A New IT Approach Aimed at Faster/Better/Cheaper,
October 2016

Creating and Deploying a Microservice
Microservices are a popular choice for modernizing legacy systems. Microservices
architectures focus on delivering small, discrete, and individually deployable services
— in some cases, each service is its own microapplication with an API, some logic or
application code, and data.

Figure 16: The High-Level Structure of a Microservice

Source: Celent

Thus, the name derives from being a collection of many small services. With discrete
services, similar, multiskilled teams using accelerated toolsets may support a set of
microservices driving an API. As detailed in the Celent report Honey, I Shrunk the
Services: Microservices in Insurance, (December 2017), the presence of an API does
not require a microservices architecture. However, typical microservices architectures
focus on delivering an API, aggregated together into a wider API.

Having small components that can be swiftly deployed to machines in an elastic
infrastructure allows for a highly scalable and adaptive infrastructure. Microservices
provide common business capabilities, accessible through an API, such as “Retrieve
Customer Name,” “Create Internal Transfer,” and “Request Credit Line Increase.” A
microservices-led approach enables reuse of services and thus reduces integration
cost and complexity.

Core

Application

Portal

Database

Orchestration

Enterprise Systems

Product Systems

Data

Channel Systems

Orchestration

Enterprise Systems

Product Systems

Data

Channel Systems

Orchestration

Enterprise Systems

Product Systems

Data

Channel Systems

Orchestration

Enterprise Systems

Product Systems

Data

Channel Systems

Orchestration

Enterprise Systems

Product Systems

Data

Channel Systems

Orchestration

Enterprise Systems

Product Systems

Data

Channel Systems

Orchestration

Enterprise Systems

Product Systems

Data

Channel Systems

Orchestration

Enterprise Systems

Product Systems

Data

Channel Systems

Orchestration

Enterprise Systems

Product Systems

Data

Channel Systems

API

M
ic

ro
-
S

e
rv

ic
e

Data

App

API

C
h
a
p
te

r:
 T

ra
n
s
fo

rm
in

g
 L

e
g

a
c
y
 S

y
s
te

m
s

13

The Anatomy of a Microservice
When we look deeper into a microservice and see the complexity therein, building
many microservices can be overwhelming until we observe how much of that
complexity can now be automated.

Figure 17: Inside a Microservice

Source: Celent

By consistently using automation and tools to build microservices it is possible to
standardize and introduce best practices, such as securing each service, using
logging to monitor and maintain each service and using caching where necessary for
performance, fault tolerance, or simply to protect vulnerable legacy systems.

Microservices architectures only work through automating the majority of the
microservices build effort.

THE LEGACY TRADE-OFF
One answer to legacy modernization is to get rid of all the legacy systems and
replace them with highly automated, fast to build microservices. While this is a
laudable goal, most legacy systems represent many tens of thousands of man-hours
of effort, and they embody complex rules and often have complex data in them.
Replacing them and building all the functionality they offer is a nontrivial task.

Most legacy systems have some strong features in their favour:

• They work
Legacy systems often support the current business and processes.

• They’re stable
Legacy systems have been around long enough that many bugs have been fixed.
With age comes stability.

• They’re cheap
Frequently legacy systems have no or a nominal license fee. Further the
infrastructure they run on is often well understood, optimised, and run at low cost.

M
ic

ro
-
S

e
rv

ic
e

Data

A
p

p

 .
.

API

M
ic

ro
-

S
e

rv
ic

e

Data

App

API

M
ic

ro
-

S
e

rv
ic

e

Data

App

API

Data Validation

Data Model

Data Persistence

Core
Logic

Cache

C
a

c
h

in
g

F
a

u
lt
 T

o
le

ra
n

c
e

T
h

ro
tt

lin
g

Encryption

Authorisation

L
o

g
g

in
g

Logs

M
o
n
ito

ri
n
g

D
a
ta

 M
a
n
a
g
e
m

e
n
t

Potentially
Automatically

Generated Code

C
h
a
p
te

r:
 T

ra
n
s
fo

rm
in

g
 L

e
g

a
c
y
 S

y
s
te

m
s

14

Replacing legacy systems for the sake of closing them, where there is no business
case to doing so, can be a bad investment.

While there is great advantage to moving to an API-oriented microservices
architecture, the simple fact is most software in financial institutions is older and
simply wasn’t built that way. These systems, while limiting in some ways, are still
valuable. The financial services industry needs a pragmatic approach to move their
technology, where it makes sense to do so, and leverage their legacy assets where it
does not.

Below we look at some approaches financial institutions and software vendors to
financial institutions are taking to modernise their infrastructure.

Key
Research
Question

2

What is a legacy system in this modern architecture?

Legacy was perceived to be certain technologies
such as COBOL or assembler, or the age of

systems, those 20 years old. Today, the defining
feature of legacy systems is that they are too slow

to change.

Legacy systems are those systems that disable the
enterprise, regardless of technology or age.

C
h
a
p
te

r:
 A

 N
e
w

 L
e
g

a
c
y
 M

o
d
e
rn

is
a
ti
o

n

15

A NEW LEGACY MODERNISATION

If we revisit Figure 5 from the first section, copied here as Figure 18, then this pattern
offers a different perspective on this logical architecture.

Figure 18: Financial Institutions and Vendors to the FS Industry Are Extending Their
Functionality

Source: Celent

If one has multiple systems of record that are fit for purpose, then it makes sense to
not migrate them. If we take the legacy definition above, if product systems 1 through
N are not disabling us, if we can build an API in front of them, then it is reasonable to
continue to use them. Most legacy systems have a surrounding set of systems to
support them or to act as workarounds; see Figure 19.

Figure 19: The Systems Supporting Legacy Contribute to Their Technical Debt

Source: Celent

These surrounding systems can be costly to run and maintain and are absolutely a
target for improving efficiency as the influence of the legacy system is reduced. While
those systems might initially enable the phased migration approach, over time these
surrounding systems could be switched off. Financial institutions have reported
reducing API build times in an environment like Figure 19 from weeks to minutes,
when supported by automated tooling.

To dig into the operational cost of this technical debt, simply analyse the number of
transformations the data goes through as it passes through the architecture. In Figure
20 we show a heterogeneous set of microservices calling through to a legacy SOA

Traditional

Channel

Systems

Contact

Centre

Channel

Systems

Web

Channel

Systems

Systems of

Engagement

Mobile

Channel

Systems

API

Systems of

Record

Product

System 1

Product

System 2

Product

System 3

Product

System N

3rd Party

Channel

System 1

3rd Party

Product

System 1

3rd Party

Channel

System N

3rd Party

Product

System N

Legacy
System

ETL
Tools

ESB &
Legacy

SOA

EAI &
Adaptors

Queuing
Systems

Bots &
RPA

C
h
a
p
te

r:
 A

 N
e
w

 L
e
g

a
c
y
 M

o
d
e
rn

is
a
ti
o

n

16

component and ultimately a COBOL program. The table below show’s each time the
information is transformed, including the encryption and decryption steps.

Figure 20: The Challenge of Many Layers and Too Many Transformations

Decrypt Decrypt Decrypt Decrypt

JSON -> JavaScript XML -> Python JSON -> Java Binary -> Cob

JavaScript -> XML Python -> JSON Java -> Binary

Encrypt Encrypt Encrypt

Source: Celent

While the use of a microservices naturally leans toward a highly communicative
architecture, one must be aware of the costs of unnecessarily deep architectures
leveraging many calls. Pragmatism is needed as well as the courage to address
middleware systems that no longer add value.

A PRAGMATIC PATH TO DIGITAL
The great challenge is to hide the implementation of the API from the surrounding
applications. If this can be realised it greatly eases the modernisation from the legacy
system to the new.

Historically, early SOA attempts with Enterprise Application Integration (EAI) suites
and later with Enterprise Service Buses (ESB) often allowed the generation of
connectors to the legacy systems, but these proto-APIs often surfaced the problems
with the underlying systems straight into the API. The API-First concept is a direct
response to this and places design of the API above the implementation.

Modern digital teams then will design the API, then may generate the bulk of the
microservices code to meet the desired API. Where legacy system access is required
to realise or execute the API, then the system owner may still use automated tools to
generate code that allows access to the legacy system. In some cases this may be
created as a microservice.

As a result, some mapping between the internal API and the desired API may be
needed; depending on the complexity this might be configured or may be coded as
another microservice.

Many microservices and API management platforms focus on newer programming
languages, applications, and use cases. Using one of these platforms to access
legacy system data requires that developers understand the underlying data structure
and programming language (often COBOL) and manually code the microservice and
accompanying API. Recognizing the challenges, and importance, of modernizing
integration to legacy systems, several vendors offer enabling solutions for mainframe
connectivity; see Table 1.

M
ic

ro
-
S

e
rv

ic
e

Data

App

API

M
ic

ro
-
S

e
rv

ic
e

Data

App

API

M
ic

ro
-
S

e
rv

ic
e

Data

App

API

L
e
g
a
c
y

Data

App

API

JSON XML JSON BINARY

C
h
a
p
te

r:
 A

 N
e
w

 L
e
g

a
c
y
 M

o
d
e
rn

is
a
ti
o

n

17

Table 1: Vendors Offering API Solutions for Mainframe Applications (Not Exhaustive)

VENDOR PRODUCT NAME DESCRIPTION

IBM z/OS Connect
Enterprise Edition

Single, focused REST API entry to all Z Systems
subsystems. Integrated REST API editor enables design
and mapping. API discovery via dynamically created
Swagger documents.

MULESOFT Catalyst Accelerator
for Banking

A set of API designs and supporting reference
implementations that accelerate the path toward digital
transformation. Provides a microservices foundation for
implementing Open Banking and PSD2 use cases.

OPENLEGACY Microservice-based
API Integration &
Management

Easily and automatically create microservices-based APIs
from legacy systems, including back-end mainframes,
midrange systems, applications and databases, and
stored procedures as a self-contained standard Java
component. Speed delivery of digital transformation
projects to days or weeks, simplify complex architectures,
and improve performance.

ROCKET
SOFTWARE

Rocket API Enable real-time access to critical business functions from
virtually any application at a fraction of the time, expense,
or risk normally associated with modernization projects.

Source: Company websites

Success with microservices and API enablers for legacy systems depends heavily on
the vendor’s approach to automation, standardization, testing, and legacy system
connectors. Ideally, the solution should automatically analyze the underlying
application to create modern code that developers can choose to transform into web
services, microservices, or REST APIs. Prebuilt connectors and templates (e.g.,
CICS or DB2) help developers to use those web services, microservices, and APIs to
build new solutions or enhance existing ones.

MITIGATING LEGACY
Legacy is not defined by age of a technology, or a particular type of technology;
rather it is a simpler, more binary judgment:

Does the technology enable the financial institution to achieve its goals and
objectives?

The goals of financial services are being rewritten by experiences and changes
outside the industry. Other industries are radically advancing expectations in terms of
speed, agility, and the human experience for staff, partners, and customers alike. The
goal posts have shifted, and the old technology, the old methods, the use of
developers to hand-code — all of this is now too slow, too legacy.

However, as we have seen above, financial institutions are adapting, are adopting
new methods, and have already paved the new routes to legacy modernisation. This
vanguard has been able to modernise where needed by adopting new techniques,
technologies, and opportunities, but also to rediscover the agility and speed in the
legacy systems.

A pragmatic approach to mitigating and limiting the impacts of legacy leads us to re-
enable the legacy systems. Where possible, if the legacy systems can be super-
charged, can become quick enough, and hit the new bar, then they can play a role in
helping an organisation meet its objectives.

C
h
a
p
te

r:
 A

 N
e
w

 L
e
g

a
c
y
 M

o
d
e
rn

is
a
ti
o

n

18

LEGACY SYSTEMS AS PARTICIPANTS IN A MICROSERVICES

ARCHITECTURE
For the foreseeable future many incumbent organisations will target an architecture
like that shown in Figure 21, where multiple legacy systems coexist with
microservices to deliver an API consumed by multiple clients.

Figure 21: Mixed Legacy and Microservice Architecture

Source: Celent

By leveraging an API as the facade in front of the implementations we can move to a
world where the API becomes the primary deliverable and we can shift the
implementations underneath it. Table 2 offers scenarios where a microservices
approach makes delivering new APIs or changes to APIs easier than a traditional
approach.

Table 2: Microservices Approach to Change Scenarios

Change Type Microservices Approach

Removing old
microservices and ending
support for old features or
versions of the API

One great challenge with large code bases is the removal of old or
unnecessary code. The key to the challenge is to prove that a piece of
code or data is no longer required, and its removal will have no adverse
effect.

Once again, with microservices the challenge is easier. If the API is now
satisfied by another application or microservice then this microservice can
be switched off and the code archived. Thus, implementing new versions
of the API as new services could be beneficial in removing old and
unnecessary code in the future.

Of course, if we are adhering to the encapsulation view of a microservice
then some scheme to share data or do a data migration is required to
implement this.

Traditional

Channel

Systems

Contact

Centre

Channel

Systems

Web

Channel

Systems

Systems of

Engagement

Mobile

Channel

Systems

Systems of

Record
Cobol

Application

RPG

Application

VSAM

Store

3rd Party

Channel

System 1

3rd Party

Channel

System N

API

M
ic

ro
-

S
e

rv
ic

e

Data

App

API

M
ic

ro
-

S
e

rv
ic

e

Data

App

API

M
ic

ro
-

S
e

rv
ic

e

Data

App

API

M
ic

ro
-

S
e

rv
ic

e

Data

App

API

M
ic

ro
-

S
e

rv
ic

e

Data

App

API

M
ic

ro
-

S
e

rv
ic

e

Data

App

API

M
ic

ro
-

S
e

rv
ic

e

Data

App

API

M
ic

ro
-

S
e

rv
ic

e

Data

App

API

M
ic

ro
-

S
e

rv
ic

e

Data

App

API

M
ic

ro
-

S
e

rv
ic

e

Data

App

API

M
ic

ro
-

S
e

rv
ic

e

Data

App

API

C
h
a
p
te

r:
 A

 N
e
w

 L
e
g

a
c
y
 M

o
d
e
rn

is
a
ti
o

n

19

Change Type Microservices Approach

Addressing legacy
implementations or
components

A key challenge with large applications or monoliths is, what does one do
when the underlying technology becomes insecure, out of date, or simply
difficult to support?

In the monolith scenario, this is the application modernization challenge
with various schemes including rewriting the entire application,
replatforming the application, or even code conversion where tools are
used to map the system from the current state to a new target one. These
all have their challenges.

In a microservices architecture each service is an application in its own
right. This means that each service can be modernized independently of
the others — in fact there is no requirement for a common architecture
among components (beyond the obvious such as supporting them at a
reasonable cost). Thus, if a service that implements an API needs to be
modernized or replatformed then the whole, small application can be
replaced and reimplemented in the new target method. For instance, if a
tool was used to generate some of the early applications and this falls out
of support, or out of fashion, then those components implemented in that
way can be rewritten in the latest tool at lower cost than the original
implementation. Since much of the test infrastructure exists against the
API, this is all reusable with the new component regardless of how it is
written.

Key Assumption: It will be faster to write new microservices in the future,
with new tools, than it is today.

Significant new version of
an API

In a monolith architecture with one application, this would require a
development team to check out part of the application, or mark part of the
application for change. It is unlikely in an active application that this is the
only change to continue, so these changes must be made at the same
time other development teams are making their changes. Each concurrent
change is thought of as a branch. The changes from all teams are then
merged together. The merged code is referred to as the trunk —
continuing the tree analogy. The great challenge in these applications is,
as the number of branches or concurrent changes increase, the merging
process is higher complexity and higher risk. This phenomenon is often
referred to as “trunk clash.”

In a microservices architecture the APIs that are being changed will be
implemented by one or more applications. This allows not just one, but
possibly multiple teams to work on the changes in unison, avoiding
challenges such as trunk clash and allowing for existing functions
unrelated to this change to be left completely alone.

Support for a new API
feature

Significant new features in this architecture typically mean delivering an
extension to the API. This allows clients to adopt the new feature as they
need to.

With a microservices-based architecture a new feature can be delivered
as a discrete application. The team can deliver the new functionality
independently of the rest of the code base and the work of the other
teams, avoiding the issues surrounding “trunk clash,” increasing the
productivity of all teams — particularly with large development teams.

Introducing a new version
of the API to co-exist with
the existing version

Let us imagine that a change is required to the API, but there are so many
clients using the existing version that we don’t want to force them to
change. In effect, the platform must support version 1 and version 2 of the
API.

Microservices offers us the option of having two, independent
implementations of the API which both exist in the same architecture but
execute as different applications. It is of course possible to have one
application which checks for the version requested, but having two allows
for an interesting option when ceasing support for old version of the API.

Source: Honey, I Shrunk the Services: Microservices and Insurance, Celent

C
h
a
p
te

r:
 T

h
e

 P
a

th
 F

o
rw

a
rd

20

THE PATH FORWARD

Legacy isn’t slow, it’s just not as fast as the digital approach. Not being as fast
doesn’t mean it is not useful. Legacy systems embody rules, data, and products that
are often worth saving, and are costly to reimplement.

While the new startups, fintech and others, favour a digital build all the way through,
this is a luxury many large financial institutions cannot afford to impose.

In this report, Celent has shown that there are routes to leverage legacy and be
digital, to make the big, slow elephant dance. A pragmatic approach is possible and
can benefit from the automation and speed seen from microservices, APIs, and use
of DevOps.

Key
Research
Question

3

Is building a new digital company from scratch the only way to
be a truly modern digital enterprise?

It is possible to make systems faster and improve
time to market with key changes.

Systems previously considered to be legacy can be
improved such that they are no longer legacy.

Here are some final tips for those embarking on a pragmatic legacy modernisation
strategy:

• Legacy can stay, automation is non-negotiable.
Leveraging modern DevOps practices and fast automation tools is the only way
to achieve agility. If legacy methods and tools stay with the legacy systems —
they will continue to disable the enterprise.

• Coordination is the enemy of speed.
Having many layers of integration technology and multiple teams to manage them
all hurt agility. DevOps sought to automate or streamline design, build,
deployment and testing activities —– all historically separate teams. Look at the
systems orbiting your legacy for opportunities to do the same. Either these need
to be automated, or consider removing them altogether.

• You can open new revenue streams without addressing legacy first.
Celent is observing examples of organisations delivering new products,
repackaging old products, and entering new services while living with legacy
systems.

The short version of this report might read, “Technology change is getting faster, you
need to move swiftly to keep pace.” Here we have presented a few routes to take
advantage of these technologies — some without losing the value from the legacy
systems.

The challenge, of course, is to go and get started.

Was this report useful to you? Please send any comments, questions, or suggestions
for upcoming research topics to info@celent.com.

mailto:info@celent.com

C
h
a
p
te

r:
 L

e
v
e
ra

g
in

g
 C

e
le

n
t’
s
 E

x
p
e
rt

is
e

21

LEVERAGING CELENT’S EXPERTISE

If you found this report valuable, you might consider engaging with Celent for custom
analysis and research. Our collective experience and the knowledge we gained while
working on this report can help you streamline the creation, refinement, or execution
of your strategies.

SUPPORT FOR FINANCIAL INSTITUTIONS
Typical projects we support related to legacy modernisation include:

Vendor short listing and selection. We perform discovery specific to you and your
business to better understand your unique needs. We then create and administer a
custom RFI to selected vendors to assist you in making rapid and accurate vendor
choices.

Business practice evaluations. We spend time evaluating your business
processes, particularly in legacy modernisation, development tools, and methodology.
Based on our knowledge of the market, we identify potential process or technology
constraints and provide clear insights that will help you implement industry best
practices.

IT and business strategy creation. We collect perspectives from your executive
team, your front line business and IT staff, and your customers. We then analyze your
current position, institutional capabilities, and technology against your goals. If
necessary, we help you reformulate your technology and business plans to address
short-term and long-term needs.

SUPPORT FOR VENDORS
We provide services that help you refine your product and service offerings.
Examples include:

Product and service strategy evaluation. We help you assess your market position
in terms of functionality, technology, and services. Our strategy workshops will help
you target the right customers and map your offerings to their needs.

Market messaging and collateral review. Based on our extensive experience with
your potential clients, we assess your marketing and sales materials — including your
website and any collateral.

C
h
a
p
te

r:
 R

e
la

te
d
 C

e
le

n
t
R

e
s
e
a
rc

h

22

RELATED CELENT RESEARCH

Mizuho Bank: AI and Social Media Banking
April 2017

2018 Model Bank Winner for Modernising IT Architecture: Intesa Sanpaolo
April 2018

Microservices: A Software Engineering Revolution Beyond the Clouds
April 2018

The New Recipe That Is Changing Insurance
February 2018

2018 Model Bank Winner for Core Banking Transformation: Zions Bank
April 2018

National Australia Bank: Personal Banking Origination Platform
April 2017

Building Your DevOps Chops: A New IT Approach Aimed at Faster/Better/Cheaper
October 2016

Celent Model Insurer 2015: Case Studies of Effective Technology Use in Insurance
March 2015

Model Insurer 2018: Case Studies in Digital and Omnichannel
April 2018

The Year of the Insurance Platform: Property / Casualty Edition
June 2018

Honey, I Shrunk the Services: Microservices and Insurance
December 2017

https://www.celent.com/insights/561255802
https://www.celent.com/insights/970123082
https://www.celent.com/insights/258866591
https://www.celent.com/insights/594345481
https://www.celent.com/insights/499690642
https://www.celent.com/insights/885999377
https://www.celent.com/insights/590946836
https://www.celent.com/insights/748888528
https://www.celent.com/insights/646550237
https://www.celent.com/insights/683913138
https://www.celent.com/insights/749981389

Copyright Notice

Prepared by

Celent, a division of Oliver Wyman, Inc.

Copyright © 2018 Celent, a division of Oliver Wyman, Inc., which is a wholly owned
subsidiary of Marsh & McLennan Companies [NYSE: MMC]. All rights reserved. This
report may not be reproduced, copied or redistributed, in whole or in part, in any form
or by any means, without the written permission of Celent, a division of Oliver Wyman
(“Celent”) and Celent accepts no liability whatsoever for the actions of third parties in
this respect. Celent and any third party content providers whose content is included in
this report are the sole copyright owners of the content in this report. Any third party
content in this report has been included by Celent with the permission of the relevant
content owner. Any use of this report by any third party is strictly prohibited without a
license expressly granted by Celent. Any use of third party content included in this
report is strictly prohibited without the express permission of the relevant content owner
This report is not intended for general circulation, nor is it to be used, reproduced,
copied, quoted or distributed by third parties for any purpose other than those that may
be set forth herein without the prior written permission of Celent. Neither all nor any
part of the contents of this report, or any opinions expressed herein, shall be
disseminated to the public through advertising media, public relations, news media,
sales media, mail, direct transmittal, or any other public means of communications,
without the prior written consent of Celent. Any violation of Celent’s rights in this report
will be enforced to the fullest extent of the law, including the pursuit of monetary
damages and injunctive relief in the event of any breach of the foregoing restrictions.

This report is not a substitute for tailored professional advice on how a specific financial
institution should execute its strategy. This report is not investment advice and should
not be relied on for such advice or as a substitute for consultation with professional
accountants, tax, legal or financial advisers. Celent has made every effort to use
reliable, up-to-date and comprehensive information and analysis, but all information is
provided without warranty of any kind, express or implied. Information furnished by
others, upon which all or portions of this report are based, is believed to be reliable but
has not been verified, and no warranty is given as to the accuracy of such information.
Public information and industry and statistical data, are from sources we deem to be
reliable; however, we make no representation as to the accuracy or completeness of
such information and have accepted the information without further verification.

Celent disclaims any responsibility to update the information or conclusions in this
report. Celent accepts no liability for any loss arising from any action taken or refrained
from as a result of information contained in this report or any reports or sources of
information referred to herein, or for any consequential, special or similar damages
even if advised of the possibility of such damages.

There are no third party beneficiaries with respect to this report, and we accept no
liability to any third party. The opinions expressed herein are valid only for the purpose
stated herein and as of the date of this report.

No responsibility is taken for changes in market conditions or laws or regulations and
no obligation is assumed to revise this report to reflect changes, events or conditions,
which occur subsequent to the date hereof.

For more information please contact info@celent.com or:

Craig Beattie cbeattie@celent.com

Patricia Hines phines@celent.com

AMERICAS EUROPE ASIA

USA

200 Clarendon Street, 12th Floor
Boston, MA 02116

Tel.: +1.617.262.3120
Fax: +1.617.262.3121

France

1 Rue Euler
Paris
75008

Tel.: +33.1.45.02.30.00
Fax: +33.1.45.02.30.01

Japan

The Imperial Hotel Tower, 13th Floor
1-1-1 Uchisaiwai-cho
Chiyoda-ku, Tokyo 100-0011

Tel: +81.3.3500.3023
Fax: +81.3.3500.3059

USA

1166 Avenue of the Americas
New York, NY 10036

Tel.: +1.212.541.8100
Fax: +1.212.541.8957

United Kingdom

55 Baker Street
London W1U 8EW

Tel.: +44.20.7333.8333
Fax: +44.20.7333.8334

USA

Four Embarcadero Center, Suite
1100
San Francisco, CA 94111

Tel.: +1.415.743.7900
Fax: +1.415.743.7950

Italy

Galleria San Babila 4B
Milan 20122

Tel.: +39.02.305.771
Fax: +39.02.303.040.44

Brazil

Av. Doutor Chucri Zaidan, 920 –
4º andar
Market Place Tower I
São Paulo SP 04578-903

Tel.: +55.11.5501.1100
Fax: +55.11.5501.1110

Switzerland

Tessinerplatz 5
Zurich 8027

Tel.: +41.44.5533.333

